• Title/Summary/Keyword: Combined sewer

Search Result 147, Processing Time 0.019 seconds

Analysis of the influence of combined use of ferronickel slag fine powder and admixture on VR sewage pipe strength development (페로니켈슬래그 미분말 및 혼화재의 복합사용이 VR 하수관 강도발현에 미치는 영향분석)

  • Nam, Sang-Koo;Chung, Tae-Jun;Jo, Seol-Ah;Yoo, Jeong-Hwan;Park, Sang-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.214-221
    • /
    • 2018
  • In this paper, the effects of ferronickel slag powder and admixture on the strength of VR sewer pipe were analyzed. the substitution rate was tested as a variable, and the strength development was studied through the flexural strength, compressive strength and using SEM microscopic analysis. bending strength, compressive strength results and micro analysis using SEM showed the correlation in each case. the substitution rates were 20% and 30% relative to the mass of the OPC respectively, and were substituted according to a constant ratio of ferronickel slag fine powder and mixture. when the substitution ratio was 20%, the strength development was excellent. also, bending strength and compressive strength were the best when the ferronickel slag fine powder, quicklime, gypsum and calcium chloride were used as the admixture, dense microstructural patterns appeared. the possibility of progressive strength development is shown after 28 days.

Urban Stormwater Runoff Treatment by the RFS (RFS를 이용한 도시유출수처리)

  • Lee, Jun-Ho;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.159-167
    • /
    • 2000
  • In recent years, combined and separated sewer overflows (CSOs, SSOs) have been recognized as a significant pollution problem. To solve this problem a series of experiments were performed in a small scale Rapid Floc Settler (RFS) device to determine its ability in removing micro particles and dissolved materials from polluted waters. The RFS device is a compact physico-chemical wasterwater treatment system. Polyacrylamide (PAM) is used as a coagulant for treating stormwater in the RFS. The results of Jar test showed that PAM could be an excellent coagulant as compared with aluminum sulfate. and ferric chloride. In several experimental conditions, the influence of different variation parameters was tested to measure the efficiency of the RFS. Tests have been carried out with typical CSOs concentrations (50~1.000mg SS/L). The treatment efficiency with regard to SS and COD, which can be obtained at an overflow rate of $130m^3/m^2/day$, are 90% and 80%, respectively. Comparing other sedimentation technologies with RFS, the overflows rate of RFS is ten times faster. The distribution of particle size and number were analyzed. The RFS is suitable for the treatment of CSOs and also the removal of settleable and dissolved materials in urban stormwater runoff.

  • PDF

Composite Oxidizing Agents Generation Using Electrolysis of Dilute Hydrochloric Acid (묽은 산 전기분해에 의한 복합 산화제 생성)

  • Kang, Shin-Young;Park, Jong-Hun;Kim, Sang-Hyoun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.329-333
    • /
    • 2016
  • Disinfection by electrolysis would be useful for small wastewater treatment plant, combined sewer overflow, ballast water, swimming pool, and fish farming, where the transport, storage, and the use of chlorine gas is limited. This study investigated the feasibility of the electrolysis of dilute hydrochloric acid (HCl) for disinfection. The effects of HCl concentration, voltage and reaction time on the generation of oxidizing agents, HOCl, $O_3$, and $H_2O_2$, were examined in a series of batch test. The highest current efficiency was 99.3% which was found at 2.2%, 3 V, and 5 min of HCl concentration, voltage, and reaction time, respectively. Continuous electrolysis at 2.2% HCl, 3 V, and 5 min of the hydraulic retention time showed 97.4% of the current efficiency. Addition of sodium chloride up to 20 g/L linearly increased the oxidizing agents production. 92.2% of total coliforms were removed by the contact with the electrolyzed water.

Runoff Characteristics of Non-Point Source Pollutants in Storm Event -Case Study on the Upstream and Downstream of Kokseong River, Korea- (강우시 비점오염물질의 유출특성에 관한 연구 -곡성천 상.하류를 대상으로-)

  • Yang Hea-Kun
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.4 s.115
    • /
    • pp.418-434
    • /
    • 2006
  • The study was investigated to runoff characteristics of non-point pollutants according to rainfall in Kokseong river watershed. The result of which is as follows : First of all, major reason which affect the formation of water quality of Kokseong River is judged to be caused by non-point pollution source which flows out from farmland and residential area. Flow of rainfall effluent in the downstream in which direct flow components of urban district and combined sewer overflows of farmland was intervened faster than that in the upstream reacted more promptly. Generation of pollutants by non-point source shows increasing trend in general in accordance with the increase in the intensity of rainfall but it was affected by SS, BOD, COD and T-P in the upstream part whereas BOD, COD and T-N were significantly affected by beginning period of rainfall in the downstream. EMC in the downstream increased approximately 3-315 times as compared to upstream, particularly the discharge of SS5 and T-P were extremely increased. While surface flow out of rainfall effluent in the upstream was only 4.7%, the surface flow in the downstream took up as much as 29%, which was major reason for the increase of EMC. From the above contents, we can see that the change in water quality according to the increase and decrease of effluent at the time of rainfall showed very complex pattern depending on the type of land use, and it is judged that the most important thing for the administration of non-point pollution source is to come up with the solution for the reduction of effluent at the beginning.

A Study of the Regeneration of Spent GAC using an Electrochemical Method (전기화학적 방법을 이용한 Spent Granular Activated Carbon (GAC)의 재생 연구)

  • Lee, Sangmin;Joo, Soobin;Jo, Youngsoo;Oh, Yeji;Kim, Hyungjun;Shim, Intae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.481-491
    • /
    • 2022
  • This study investigates the characteristics of the GAC adsorption behavior during the operation of a multi-stage cross-flow filtration and GAC adsorption process for the purpose of devising an advanced treatment of combined sewer overflows (CSOs) and evaluates the regeneration efficiency of spent GAC that has reached the design breakpoint. During the filtration process, suspended substances are easily removed, but dissolved organic substances are not removed, necessitating a process capable of removing dissolved organic substances for the advanced treatment of CSOs. In general, GAC adsorption has been applied under low-concentration organic conditions, such as for water purification and tertiary treatments of sewage, and has rarely been applied under conditions with high organic concentrations, such as with sewage or CSOs. Accordingly, this study will provide a new and interesting experience. Also in this study, the continuous operation and breakthrough characteristics of GAC according to the strength of the inflow organic matter were investigated, electrochemical regeneration was applied to the used GAC, and the regeneration efficiency was evaluated through desorption and re-adsorption tests. The results showed that the breakthrough period was 21 days under high concentration conditions, 28 days at medium concentrations, and 32 days under low concentration conditions. The desorption of adsorbed organic matter through electrolysis occurred in the range of 188 to 609 mgCOD/L depending on the electrolysis conditions, and the effect of the electrolyte type led to the finding that NaOH was slightly higher than H2O2.

Spent-GAC Regeneration Using Variable Frequency Sono-Fenton Oxidation (가변 주파수 Sono-Fenton 산화를 이용한 Spent-GAC 재생기술)

  • Joo, Soobin;Lee, Sangmin;Kim, Hyungjun;Shim, Intae;Kim, Heejin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.449-458
    • /
    • 2023
  • As an adsorption technology for dissolved organic matter, the adsorption capacity of granular activated carbon, GAC, can be applied, but activated carbon whose adsorption capacity is significantly reduced by use is inevitably replaced or regenerated. However, due to the economics of replacement cost, thermal regeneration method is used commercially, but high energy cost and loss of activated carbon occur under high temperature conditions above 800℃. In this study, the Sono-Fenton method, a multi-oxidation technology that combines Fenton oxidation and ultrasonic oxidation, was applied to improve the regeneration efficiency of spent GAC used to treat dissolved organic matter in combined sewer overflows (CSOs), and the regeneration efficiency of spent GAC by oxidant and ultrasonic frequency was investigated. In the applied Sono-Fenton treatment, the highest regeneration efficiency of 68.5% was obtained under the regeneration conditions of Fe2+ 10 mmol/L, H2O2 concentration 1,000 mmol/L, ultrasonic treatment time of 120 min, and ultrasonic frequency of 40 kHz. And similar efficiency was also obtained at 750 kHz, while ultrasonic waves of other frequencies had poor regeneration efficiency, and the magnitude of frequency and GAC regeneration efficiency did not show a linear relationship. In the case of continuous operation of the GAC adsorption tower with CSOs prepared by diluting raw sewage, about 700 hours of operation without regeneration was possible, and as a result of applying one Sono-Fenton treatment, 40-70% CODcr removal efficiency was obtained during a total of 1,000 hours of GAC adsorption operation.

Analysis of Environmental Odor Factors for Dorim Stream in Gwanak-gu, Seoul (서울시 관악구 도림천 복개 정도에 따른 환경 악취 요인 분석)

  • Soyoung Park;Gokce Nur Ayaz;Heewon Kim;Hyungkee Yoon;Taehong Kwon;Sungkyoon Kim
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.2
    • /
    • pp.83-92
    • /
    • 2024
  • Background: In this study, we investigate the rapid increase in environmental odors and notable rise in civil complaints near Dorim Stream in the Gwanak-gu area of Seoul. Objectives: This study aims to identify the causal compounds responsible for environmental odors in the Dorim Stream and investigate the structural characteristics of the stream that influence odor generation. Methods: The research methodology involved setting up 41 sampling points, selecting panels for direct sensory evaluation to assess odor intensity, measuring dissolved oxygen and hydrogen sulfide concentrations, and using all-in-one low-temperature desorption gas chromatography (ATD-GC) and thermal desorption-gas chromatography-mass spectrometry (TD-GC/MS) analysis to identify odor-causing compounds. Results: The evaluation of Dorim Stream revealed that in areas with complete meandering, there were lower dissolved oxygen levels (4.5±2.67 mg/L) and higher odor intensity (4.0±0.92), while in partially meandering sections, higher dissolved oxygen levels (7.8±1.15 mg/L) and lower odor intensity (2.8±1.06) were observed. Hydrogen sulfide levels measured with sensors increased with higher temperatures, especially in the afternoon hours (12:00~14:00). Acetaldehyde was the dominant odor compound detected in both the Bonglim Bridge (0.4 ppm) area and Guro Bridge area (0.867 ppm), with concentrations more than twice as high near Guro Bridge. Odor-causing compounds identified by TD-GC/MS indicated a pungent, sulfurous odor in the Guro Bridge area and a musty odor in the Bonglim Bridge area. Conclusions: This study categorizes and analyzes the sources of odor in Dorim Stream in Seoul based on meandering patterns and the distribution of sewage facilities, highlighting the potential odor issues associated with combined sewage systems and sewer junctions and suggesting policy improvements.