• 제목/요약/키워드: Combined heat and power

Search Result 324, Processing Time 0.031 seconds

Analysis of Performance Enhancement of a Microturbine by Water Injection (수분사를 통한 마이크로터빈 성능향상 해석)

  • Jeon, Mu-Sung;Lee, Jong-Jun;Kim, Tong-Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.46-51
    • /
    • 2009
  • Recently, microturbines have received attention as a small-scale distributed power generator. Since the exhaust gas carries all of the heat release, generating hot water is usual method of heat recovery from microturbine CHP (combined heat and power) systems. The power of microturbines decreases as ambient temperature increases. This study predicted micoturbine power boost by injecting hot water generated by heat recovery. Influence of injecting water at two different locations was examined. Water injection improves power, but efficiency depends much on the injection location. Injecting water at the compressor discharge shows a much higher efficiency than the combustor injection. However, the combustor injection may have as much available cogeneration heat as the dry operation, while the available heat in the compressor discharge injection is much smaller than the dry operation.

The Basic Study on Economic Evaluation of Micro-turbine and Alternative Energy system Installed in Hospital (병원건물의 마이크로터빈과 신재생에너지도입에 따른 경제성평가 기초연구)

  • Kim, Byoung-Soo;Hong, Won-Pyo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.439-444
    • /
    • 2009
  • This paper gives a basic Energy performance data of micro gas turbine and Renewable Energy(BIPV and Solar Collector System) installed in Hospital Building. The efficiency of. solar collector and BIPV system was 30%, 10% individually, and lower than micro gas turbines. Micro gas turbines are small gas turbines that bum gaseous and liquid fuels to produce a high-energy exhaust gas and to generate the electrical power. Recently the size range for micro gas turbines is form 30 to 500kW and power-only generation or in combined heat and power(CHP) systems. If micro gas turbine was operated only for electric energy, the efficiency was about 30%, but for combined heat and power, the efficiency was about 90%. Finally, installed in large hospital, Micro gas turbine system was operated to CHP mode, was high-efficiency system than Solar collector and BIPV system.

  • PDF

The Basic Study on Economic Evaluation of Distributed Energy System Installed in Hospital (병원건물 분산에너지시스템 도입에 따른 경제성분석)

  • Hong, Won-Pyo;Kim, Hyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1136_1138
    • /
    • 2009
  • This paper gives a basic Energy performance data of micro gas turbine and Renewable Energy(BIPV and Solar Collector System) installed in Hospital Building. The efficiency of solar collector and BIPV system was 30%, 10% individually, and lower than micro gas turbines. Micro gas turbines are small gas turbines that burn gaseous and liquid fuels to produce a high-energy exhaust gas and to generate the electrical power. Recently the size range for micro gas turbines is form 30 to 500kW and power-only generation or in combined heat and power(CHP) systems. If micro gas turbine was operated only for electric energy, the efficiency was about 30%, but for combined heat and power, the efficiency was about 90%. Finally, installed in large hospital, Micro gas turbine system was operated to CHP mode, was high-efficiency system than Solar collector and BIPV system.

  • PDF

Test of Heat Recovery Performance of a Microturbine (마이크로터빈의 열회수 성능시험)

  • Jeon, Mu-Sung;Lee, Jong-Jun;Kim, Tong-Seop;Chang, Se-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.629-635
    • /
    • 2008
  • Recently, microturbines have received attention as a small-scale distributed power generator. Since the exhaust gas carries all of the heat release, the microturbine CHP (combined heat and power) system is relatively compact and easy to maintain. Generating hot water or steam is usual method of heat recovery from the microturbine. In this work, a heat recovery unit producing hot water was installed at the exhaust side of a 30 kW class microturbine and its performance characteristics following microturbine power variation was investigated. Heat recovery performance has been compared for different operating conditions such as constant hot water temperature and constant water flow rate. In particular, the influence of water flow rate and hot water temperature on the recovered heat was analyzed.

Solid Oxide Fuel Cells Designs, Materials, and Applications

  • Singhal Subhash C.
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.777-786
    • /
    • 2005
  • The Solid Oxide Fuel Cell (SOFC) is an electrochemical device to convert chemical energy of a fuel into electricity at temperatures from about 600 to $1000^{\circ}C$. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use CO as a fuel rather than being poisoned by it, and high grade exhaust heat for combined heat and power, or combined cycle gas turbine applications. This paper reviews the operating principle, materials for different cell and stack components, cell designs, and applications of SOFCs. Among all designs of Solid Oxide Fuel Cells (SOFCs), the most progress has been achieved with the tubular design. However, the electrical resistance of tubular SOFCs is high, and specific power output $(W/cm^2)$ and volumetric power density $(W/cm^3)$ low. Planar SOFCs, in contrast, are capable of achieving very high power densities.

Evaluation of Performance and Economics of Organic Rankine Cycle Integrated into Combined Cycle Cogeneration Plant (복합열병합발전소에 적용된 유기랭킨사이클의 성능 및 경제성 평가)

  • Kim, In Seop;Kim, Chang Min;Kim, Tong Seop;Lee, Jong Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.41-47
    • /
    • 2017
  • This study aimed to analyze organic Rankine cycle(ORC) which recovers discarded heat from a gas turbine based combined cycle cogeneration(CC-cogen) plant in terms of both performance and economics. The nominal electric power of the CC-cogen plant is around $120MW_e$, and heat for district heating is $153MW_{th}$. The major purpose of this study is to compare various options in selecting heat source of the ORC. Three heat sources were compared. Case 1 uses the exhaust gas from the HRSG, which is purely wasted to environment in normal plant operation without ORC. Case 2 also uses the exhaust gas from the HRSG. On the other hand, in this case, the DH economizer, which is located at the end of the HRSG, does not operate. Case 3 generates power using some of the district heating water which is supplied to consumers. The estimated ORC power generation ranges between 0.3 to 2.3% of the power generation capacity of the CC-cogen plant. Overall, Case 3 is evaluated to be better than other two options in terms of system design flexibility and power generation capacity.

Study of fuel cell CHP-technology on electricity generation sector using LEAP-model (LEAP 모형을 이용한 연료전지 열병합발전설비 도입에 따른 온실가스배출저감 잠재량 분석)

  • Shin, Seung-Bok;Jun, Soo-Young;Song, Ho-Jun;Park, Jong-Jin;Maken, Sanjeev;Park, Jin-Won
    • Journal of Energy Engineering
    • /
    • v.18 no.4
    • /
    • pp.230-238
    • /
    • 2009
  • We study about small gas engine and fuel cell CHP (Combined Heat and Power) as the technologies for energy conservation and $CO_2$ emissions reduction. Korea government plans to use them in near future. This study quantitatively analyzed energy consumption and $CO_2$ emissions reduction potential of small CHP instead of existing electric power plant (coal steam, combined cycle and oil steam) using LEAP (Long-range Energy Alternative Planning system) as energy-economic model. Three future scenarios are discussed. In every scenario similar condition for each CHP is used. Alternative scenario I: about 6.34% reduction in $CO_2$ emissions is observed in 2019 due to increase in amount of gas engine CHP and fuel cell CHP while coal use in thermoelectric power plant is almost stagnant. In alternative scenario II: a small 0.8% increase in $CO_2$ emission is observed in 2019 keeping conditions similar to alternative scenario I but using natural gas in combined cycle power plant instead of coal. During alternative scenario II overall $CO_2$ emission reduction is observed in 2019 due to added heat production from CHP. Alternative scenario III: about 0.8% reduction in $CO_2$ emissions is observed in 2019 using similar CHP as AS I and AS II. Here coal and oil are used in thermoelectric power plant but the quantity of oil and coal is almost constant for next decade.

A study on Estimation Method of Generation Cost for Planning for Combined Heat and Power (열병합발전의 계획발전원가 산정방법에 관한 연구)

  • Kim, Yong-Ha;Lee, Buhm;Choi, Sang-Kyu;Kim, Mi-Ye;Cho, Sung-Rin;Jung, Hyun-Sung;Yun, Jong-Hae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.828-830
    • /
    • 2005
  • A index using generation cost for planning' for representing economical efficiency of generator, However in case of Combined heat and power(CHP) the product is divided in electrical power and steam, so there are no unconditional comparison between general generator and CHP. To calculating the generation cost for planning of CHP, this study using the method that change electrical power and steam into same unit and suggest the comparing system that can compare economical efficiency with other generators.

  • PDF

Development of stacks and power generation systems based on anode-supported SOFCs for intermediate temperature operation (연료극 지지체형 SOFC를 이용한 중.저온용 스택 및 발전시스템 개발)

  • Lee, Tae-hee;Choi, Jin-Hyeok;Park, Tae-Sung;Yoo, Young-Sung;Park, Jin-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1986-1991
    • /
    • 2007
  • KEPRI has studied anode-supported planar SOFCs and kW class stacks operated at intermediate temperature for development of a combined heat and power unit. A single cell composed of Ni-YSZ/FL/ScSZ/LSCF showed the maximum power density of 0.55 W/$cm^2$ at $650^{\circ}C$ and 1.8 W/$cm^2$ at $750^{\circ}C$. With 37 cells of 10${\times}10cm^2$ and stainless steel interconnects, a 1kW class SOFC stack was manufactured. When a 1kW class SOFC system was operated at $750^{\circ}C$ with city gas, it showed the power output of 1.3 kWe at 50 A. It also recuperated heat of 0.57-1.2 kWth according to the loaded current through combustion of unreacted anode off-gas. Recently, KEPRI is developing a new kW class SOFC stack and system to increase efficiency and durability at intermediate temperature.

  • PDF

Analysis of the $CO_2$ emission amount and characteristics of combined heat and power plants in industrial complex by using the fuel analysis method (연료분석 방법을 적용한 산업단지 열병합발전소 이산화탄소 배출량 및 배출특성분석)

  • Kang, Seok-Hun;Chung, Dae-Hun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1243-1248
    • /
    • 2008
  • $CO_2$ emission amount and characteristics of combined heat and power (CHP) plant in industrial complex of Korea is evaluated by using the fuel analysis method. Fuel analysis methods of several foreign countries and developed one which is developed considering the operation characteristics of the surveyed CHP plants are used. The operation data is surveyed for all of the CHP plants in industrial complex and is composed of fuel consumption amount, generation, sale and efficiency of heat and electricity, condensed steam enthalpy, and etc of the each CHP.

  • PDF