• 제목/요약/키워드: Combined heat and mass transfer

검색결과 33건 처리시간 0.03초

열과 물질 전달을 수반하는 연속휜의 휜효율에 관한 연구 (A Study on the Fin Efficiency of Continuous Fin with Combined Heat and Mass Transfer)

  • 정세환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.445-450
    • /
    • 1998
  • In the present paper the effects of combined heat and mass transfer on the fin efficiency were calculated. Sector method was used for calculating the fin efficiency of the continuous fin. The parameter Lewis No. and C which describe the combined heat and mass transfer is derived by using the heat and mass transfer analogy and effects of Lewis No. and C on the fin efficiencies were calculated.

  • PDF

GAX 암모니아 흡수식 열폄프의 발생기 일체형 정류기의 열 및 물질전달 해석 (Heat and mass transfer characteristics of generator combined rectification system of the GAX ammonia absorption heat pump)

  • 윤상국
    • 설비공학논문집
    • /
    • 제11권4호
    • /
    • pp.431-439
    • /
    • 1999
  • A generator-GAX combined rectification system of an ammonia absorption heat pump was investigated to get the optimum design values. The mass and heat transfer phenomena of the rectification system were analysed. The number of column plates, equilibrium temperature of solution on each plate and flow rates of solution and vapor generated were predicted. The characteristics of mass and heat transfer of the generator-GAX combined rectification system, i.e. concentration difference of leaving solution and vapor on each column plate, were found to be mainly governed by the pressure of generator, reflex ratio and temperature difference of analyser coolant. The number of rectification column plates for each different pressure in generator was obtained. The optimum locations for installing the feeder from solution-cooled absorber and GAX desorber in generator were predicted. The improvement of COP was followed by the increase of the rectifier efficiency and the number of column plate, and the decrease of reflex ratio.

  • PDF

Non-absorbable Gas Effects on Heat and Mass Transfer in Falling Film Absorption

  • Kim, Byongjoo;Lee, Chunkyu
    • Journal of Mechanical Science and Technology
    • /
    • 제17권4호
    • /
    • pp.581-589
    • /
    • 2003
  • Film absorption involves simultaneous heat and mass transfer in the gas-liquid system. While the non-absorbable gas does not participate directly In the absorption process. its pretence does affect the overall heat and mass transfer. An experimental study was performed to investigate the heat and mass transfer characteristics of LiBr-H$_2$O solution flow ing over 6-row horizontal tubes with the water vapor absorption in the pretence of non-absorbable gases. The volumetric concentration of non-absorbable gas, air, was varied from 0.17 to 10.0%. The combined effects of the solution flow rate and its concentration on the heat and mass transfer coefficients were also examined. The presence of 2% volumetric concentration of air resulted in a 25% reduction in the Nusselt number and 41% reduction in the Sherwood number Optimum film Reynolds number was found to exist at which the heat and mass transfer reach their maximum value independent of air contents. Reduced Nusselt and Sherwood numbers. defined as the ratio of Nusselt and Sherwood numbers at given non-absorbable gas content to that with pure water vapor, were correlated to account for the reduction in the heat and mass transfer due to non-absorbable gases in a falling film absorption process.

Heat and mass transfer analysis in air gap membrane distillation process for desalination

  • Pangarkar, Bhausaheb L.;Sane, Mukund G.
    • Membrane and Water Treatment
    • /
    • 제2권3호
    • /
    • pp.159-173
    • /
    • 2011
  • The air gap membrane distillation (AGMD) process was applied for water desalination. The main objective of the present work was to study the heat and mass transfer mechanism of the process. The experiments were performed on a flat sheet module using aqueous NaCl solutions as a feed. The membrane employed was hydrophobic PTFE of pore size 0.22 ${\mu}m$. A mathematical model is proposed to evaluate the membrane mass transfer coefficient, thermal boundary layers' heat transfer coefficients, membrane / liquid interface temperatures and the temperature polarization coefficients. The mass transfer model was validated by the experimentally and fitted well with the combined Knudsen and molecular diffusion mechanism. The mass transfer coefficient increased with an increase in feed bulk temperature. The experimental parameters such as, feed temperature, 313 to 333 K, feed velocity, 0.8 to 1.8 m/s (turbulent flow region) were analyzed. The permeation fluxes increased with feed temperature and velocity. The effect of feed bulk temperature on the boundary layers' heat transfer coefficients was shown and fairly discussed. The temperature polarization coefficient increased with feed velocity and decreased with temperature. The values obtained were 0.56 to 0.82, indicating the effective heat transfer of the system. The fouling was observed during the 90 h experimental run in the application of natural ground water and seawater. The time dependent fouling resistance can be added in the total transport resistance.

사각 덕트 내부 열전달 향상을 위한 요철의 단락 효과 (Effects of Discrete Rib-Turbulators on Heat/Mass Transfer Augmentation in a Rectangular Duct)

  • 권혁진;우성제;조형희
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.744-752
    • /
    • 2000
  • The influence of arrangement and length of discrete ribs on heat/mass transfer and friction loss is investigated. Mass transfer experiments are conducted to obtain the detailed local heat/mass transfer information on the ribbed wall. The aspect ratio (width/height) of the duct is 2.04 and the rib height is one tenth of the duct height, such that the ratio of the rib height to hydraulic diameter is 0.0743. The ratio of rib-to-rib distance to rib height is 10. The discrete ribs were made by dividing each continuous rib into 2, 3 or 5 pieces and attached periodically to the top and the bottom walls of the duct with a parallel orientation The combined effects of rib angle and length of the discrete ribs on heat/mass transfer ae considered for the rib angles $({\alpha})\;of\;90^{\circ}\;and\;45^{\circ}$. As the number of the discrete ribs increases, the uniformity of the heat/mass transfer distributions increases. For $(\alpha})=90^{\circ}$, the heat/mass transfer enhancement with the discrete ribs is remarkable, while the heat/mass transfer performances are slightly higher than that of the transverse continuous ribs due to the accompanied high friction loss penalty. For $(\alpha})=90^{\circ}$, the average heat/mass transfer coefficients and the heat/mass transfer performances decrease slightly with the discrete ribs compared to the case of the angled continuous ribs.

회전하는 터빈 블레이드 내부 이차냉각유로에서 엇갈린요철과 평행요철이 열/물질전달에 미치는 영향 (Effect of Cross/Parallel Rib Configurations on Heat/Mass Transfer in Rotating Two-Pass Turbine Blade Internal Passage)

  • 이세영;이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제26권9호
    • /
    • pp.1249-1259
    • /
    • 2002
  • The present study investigates the convective heat/mass transfer inside a cooling passage of rotating gas-turbine blades. The rotating duct has various configurations made of ribs with 70。 attack angle, which are attached on leading and trailing surfaces. A naphthalene sublimation technique is employed to determine detailed local heat transfer coefficients using the heat and mass transfer analogy. The present experiments employ two-surface heating conditions in the rotating duct because the surfaces, exposed to hot gas stream, are pressure and suction side surfaces in the middle passages of an actual gas-turbine blade. In the stationary conditions, the parallel rib arrangement presents higher heat/mass transfer characteristics in the first pass, however, these characteristics disappear in the second pass due to the turning effects. In the rotating conditions, the cross rib present less heat/mass transfer discrepancy between the leading and the trailing surfaces in the first pass. In the second pass, the heat/mass transfer characteristics are much more complex due to the combined effects of the angled ribs, the sharp fuming and the rotation.

가스 터빈 블레이드 냉각 성능 향상을 위한 경사요철의 단락 효과 (An Investigation of Angled Discrete Rib-Turbulators for Cooling Enhancement of Gas Turbine Blades)

  • 우성제;이세영;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.782-789
    • /
    • 2001
  • Local heat/mass transfer and friction loss in a square duct roughened with various types of continuous and discrete rib turbulators are investigated. The combined effects of the gap flows of the discrete ribs and the secondary flows are examined for the purpose of the reduction of thermally weak regions and the promotion of the uniformity of heat/mass transfer distributions as well as the augmentation of average heat/mass transfer. The rib-to-rib pitch to the rib height ratio (p/e) of 8 and the rib angles of 90 and 60 deg are selected with $e/D_{h}=0.08$. The vortical structure of the secondary flows induced by the parallel angled arrays are quite distinct from that induced by the cross angled arrays. This distinction influences on heat/mass transfer and friction loss in all the tested cases. The gap flows of the discrete ribs reduce the strength of the secondary flows but promote local turbulence and flow mixing. As a result, the fairly uniform heat/mass transfer distributions are obtained with two row gaps.

  • PDF

정사각 덕트 내에서 열/물질전달 촉진을 위한 경사진 단락 요철의 좁은 틈새 효과 (Heat/Mass Transfer Augmentation in a Square Duct . Roughened with Angled Discrete Ribs Having Narrow Gaps)

  • 우성제;이세영;최청;조형희
    • 대한기계학회논문집B
    • /
    • 제26권1호
    • /
    • pp.150-158
    • /
    • 2002
  • Local heat/mass transfer and friction loss in a square duct roughened with various types of continuous and discrete rib turbulators are investigated. The combined effects of the gap flows of the discrete ribs and the secondary flows are examined for the purpose of the reduction of thermally weak regions and the promotion of the uniformity of heat/mass transfer distributions as well as the ;augmentation of average heat/mass transfer. The rib-to-rib pitch to the rib height ratio (p/e) of 8 and the rib angles of 90° and 60° are selected with e/D$\_$h/=0.08. The vortical structure of the secondary flows induced by the parallel angled arrays are quite distinct from that induced by the cross angled arrays. This distinction influences on heat/mass transfer and friction loss in all the tested cases. The gap flows of the discrete ribs reduce the strength of the secondary flows but promote local turbulence and flow mixing. Consequently, the angled discrete ribs with the small gaps provide a more uniform heat/mass transfer distribution sustaining high average heat/mass transfer.

회전하는 터빈 블레이드 이차유로내 요철 배열이 열/물질전달에 미치는 영향 (Effect of Heat/Mass Transfer in the turbine blade internal passage with various rib arrangement)

  • 이세영;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.22-29
    • /
    • 2001
  • The present study investigates the effects of various rib arrangements and rotating on heat/mass transfer in the cooling passage of gas turbine blades. The cooling passage has very complex flow structure, because of the rib turbulator and rotating effect. Experiments and numerical calculation are conducted to investigate the complex flow structures and heat transfer characteristics; the numerical computation is performed using a commercial code, FLUENT ver.5, to calculate the flow structures and the experiments are conducted to measure heat/mass transfer coefficients using a naphthalene sublimation technique. For the rotating duct tests, the test duct, which is the cross section of is $20mm\times40mm$ (the hydraulic diameter, $D_h$, of 26.7 mm, has two-pass with $180^{\circ}$ turning and the rectangular ribs on the wall. The rib angle of attack is $70^{\circ}$ and the maximum radius of rotation is $21.63D_h$. The partition wall has 10 mm thickness, which is 0.5 times to the channel width, and the distance between the tip of the partition wall and the outer wall of the turning region is 26.7 mm $(1D_h)$. The turning effect of duct flow makes the very complex flow structure including Dean type vortex and high turbulence, so that the heat/mass transfer increases in the turning region and at the entrance of the second pass. The Coriolis effect deflects the flow to the trailing surface, resulting in enhancement of the heat/mass transfer on the trailing surface and reduction on the leading surface in the first pass. However, the opposite phenomena are observed in the second pass. The each rib arrangement makes different secondary flow patterns. The complex heat/mass transfer characteristics are observed by the combined effects of the rib arrangements, duct rotation and flow turning.

  • PDF

흡수성능에 미치는 수직 액막 파동의 영향에 관한 연구 (Effect of Wavy Flow of Vertical Falling Film on the Absorption Performance)

  • 김정국;조금남
    • 설비공학논문집
    • /
    • 제16권2호
    • /
    • pp.194-201
    • /
    • 2004
  • In the present study, the improvement of absorption characteristics on combined heat and mass transfer process in a falling film of a vertical absorber by change of geometric parameters were studied experimentally and analytically. The energy and diffusion equations are solved simultaneously to give the temperature and concentration variations at the liquid solution-refrigerant vapor interface and at the wall. Absorption behaviors of heat and mass transfer were analyzed through falling film of the LiBr aqueous solution contacted by refrigerant vapor in the absorber. Effects of film Reynolds number, geometric parameters by insert device (spring) and flow pattern on heat and mass transfer performances have been also investigated. Especially, effects of the flow pattern by geometric parameters have been considered to observe the total heat and mass transfer rates through falling film along the absorber. As a numerical and experimental result, maximum absorption rate was shown at the wave-flow by insert device (spring). The error ranges between experiment and analysis were from 5.8 to 12% at Re$_{f}$ > 100.0.