• Title/Summary/Keyword: Combined cooling

Search Result 251, Processing Time 0.026 seconds

Performance Measurements of A Stirling Engine for Household Micro Combined Heat and Power with Heat Source Temperatures and Cooling Flow Rates (가정용 열병합 발전을 위한 스털링 엔진의 열원 온도 및 냉각수 유량에 따른 성능 실험)

  • Sim, Kyuho;Kim, Mingi;Lee, Yoon-Pyo;Jang, Seon-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • A Beta-type Stirling engine is developed and tested on the operation stability and cycle performance. The flow rate for cooling water ranges from 300 to 1500 ml/min, while the temperature of heat source changes from 300 to $500^{\circ}C$. The internal pressure, working temperatures, and operation speed are measured and the engine performance is estimated from them. In the experiment, the rise in the temperature of heat source reduces internal pressure but increases operation speed, and overall, enhances the power output. The faster coolant flow rate contributes to the high temperature limit for stable operation, the cycle efficiency due to the alleviated thermal expansion of power piston, and the heat input to the engine, respectively. The experimental Stirling engine showed the maximum power output of 12.1 W and the cycle efficiency of 3.0 % when the cooling flow is 900 ml/min and the heat source temperature is $500^{\circ}C$.

Development of Simulation Program of Automotive Engine Cooling System (자동차 엔진냉각계의 해석 프로그램의 개발)

  • 배석정;이정희;최영기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.943-956
    • /
    • 2003
  • A numerical program has been developed for the simulation of automotive engine cooling system. The program determines the mass flow rate of engine coolant circulating the engine cooling system and radiator cooling air when the engine speed is adopted by appropriate empirical correlation. The program used the method of thermal balance at individual element through the model for radiator component in radiator analysis. This study has developed the program that predicts the coolant mass flow rate, inlet and outlet temperatures of each component in the engine cooling system (engine, transmission, radiator and oil cooler) in its state of thermal equilibrium. This study also combined the individual programs and united into the total performance analysis program of the engine cooling system operating at a constant vehicle speed. An air conditioner system is also included in this engine cooling system so that the condenser of the air conditioner faces the radiator. The effect of air conditioner to the cooling performance, e.g., radiator inlet temperature, of the radiator and engine system was examined. This study could make standards of design of radiator capacity using heat rejection with respect to the mass flow rate of cooling air. This study is intended to predict the performance of each component at design step or to simulate the system when specification of the component is modified, and to analyze the performance of the total vehicle engine cooling system.

A Study on Optimal Operation of Cooling System Using Dynamic Programing (동적 계획법을 이용한 냉방시스템 최적운전에 관한 연구)

  • Han, Kyu-Hyun;Yoo, Seong-Yeon;Lee, Je-Myo;Lee, Il-Su
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1061-1064
    • /
    • 2009
  • The objective of this study is to find the optimal operational planning of the hybrid cooling system, which is combined by ice storage system and the absorption chiller. The optimization technique used in this study is dynamic programming. The objective function is summed cost during a day including charge and discharge periods of ice storage system and operation time of absorption chiller. Assuming that initially ice storage tank is stored fully and the cooling load is perfectly predicted for the operational planning. This method provides the most efficient and economic combination of equipment operational planning for cooling with respect to energy consumption cost.

  • PDF

A Study on the Application of Thermoelectric Module to the Electric Telecommunication Equipment Cooling (열전소자를 이용한 전자 통신장비 냉각에 관한 연구)

  • Kim, Jong-Soo;Im, Yong-Bin;Kong, Sang-Un
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.16 no.2
    • /
    • pp.210-217
    • /
    • 2004
  • Cooling technology has been a vital prerequisite for the rapid, if not explosive, growth of the electronic equipment industry. This has been especially true during the last 20 years with the advent of intergrated circuit chips and their applications in computers and related electronic products. The purpose of this study is to develop a telecommunication equipment cooling system using a thermoelectric module combined with cooling fan. Thermoelectric module is a device that can perform cooling only by input of electric power. In the present study, the cooling package using the thermoeletric module has been developed to improve the thermal performance. The cooling characteristics of the electronic chip was placed into the subrack and it can be rapidly assembled or disassembled in the equipment rack. As a preliminary experiment, the cooling performances between a conventional way using a cooling fin and a proposed method applying the thermoelectric module was comosed and analyzyed. The cooling performance at a simulated electronic component packaging a thermomodule operated well.

The Effect of the Combined Operation of Sprinkler and Vent Systems on the Smoke Control in a Horizontal Corridor (스프링클러와 배연설비의 통합작동이 수평통로의 연기제어에 미치는 영향)

  • Jeon Heung-Kyun;Choi Young-Sang;Choo Hong-Lok;Jang Jun-Young
    • Fire Science and Engineering
    • /
    • v.19 no.1 s.57
    • /
    • pp.70-89
    • /
    • 2005
  • Fire scenarios in a space $20.0m\;\times\;4.0m$ floor and 3.0m high were simulated by using computational fluid dynamics program (FDS 4.0.3) to investigate the effect of the combined operation of both sprinkler and vent systems, which are installed for cooling and blocking smoke which propagates beneath the ceiling of a horizontal corridor, on the temperature and smoke density of it. It was shown that the combined operation both sprinkler and vent systems was more effective than each operation for cooling and blocking smoke, the number of operating sprinklers was two because of corner effect of wall, and over-installed sprinklers deteriorated the effect of cooling and blocking smoke. This study showed that the case of two sprinklers and vent flow rate $3.0m^3/s$ in fire scenario was the most effective for cooling and blocking smoke. It was confirmed that the smoke downdrag occurs in operating sprinkler system, and the more smoke droplets produced by increasing fire size, the greater smoke downdrag occurred.

Study on Characteristics Comparison of Unpowered Cooling and Heating Combined Device using Solar Heat (태양열을 이용한 무동력 냉난방 겸용장치의 특성 비교 연구)

  • Lee, Jaehan;Chun, Taekyu;Yang, Youngjoon
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.20-26
    • /
    • 2018
  • As the global warming due to greenhouse effect has become serious problem, it is necessary to introduce the technology, for instance, such as diversity or saving of energy to reduce the use of fossil fuel. The purpose of this study was to investigate the characteristics on materials of absorption plate, unpowered and minimum use of power in cooling and heating combined device. As the results, it was observed that, in case of summer, since temperature of absorption device of solar heat(ADSH) was lower than that of no ADSH, cooling effect was insignificant in case of being not installed cold-reservoir. However, in case of winter, heating effect was certified even though the power was not used. At secondhand, the performance of ADSH with Cu was higher 2 times than that of ADSH with Al.

An Experimental Study on the Application of Polypropylene Capillary Tube Cooling System (폴리프로필렌 모세유관 냉방시스템의 적용에 관한 실험적 연구)

  • Lee Young-Ju;Jin Wu-feng;Yeo Myoung-Souk;Kim Kwang-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.873-881
    • /
    • 2005
  • In this study, we made RFC, RCC and NCC according to the method by which polypropylene capillary tube was adopted, and evaluated cooling performance of each system through model experiments. We also investigated an applicability of the combined use of radiant cooling and dehumidification system. The results are as follows: In case of normal cooling load, RFC and RCC maintained set temperature without a condensation. But, in case of peak cooling load, RFC and RCC resulted in the lack of cooling performance and caused a condensation at the radiation surface. Consequently, the only use of polypropylene capillary tube is considered not to be enough for cooling in real application. Using the combination of a dehumidification and radiant cooling system maintained the set temperature without a condensation. NCC kept the set temperature at anytime without a condensation. It is more economic than packaged air-conditioner system due to the cooling effect of the floor surface.

Design and Exergy Analysis for a Combined Cycle of Liquid/Solid $CO_2$ Production and Gas Turbine using LNG Cold/Hot Energy

  • Lee, Geun-Sik
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.1
    • /
    • pp.34-45
    • /
    • 2007
  • In order to reduce the compression power and to use the overall energy contained in LNG effectively, a combined cycle is devised and simulated. The combined cycle is composed of two cycles; one is an open cycle of liquid/solid carbon dioxide production cycle utilizing LNG cold energy in $CO_2$ condenser and the other is a closed cycle gas turbine which supplies power to the $CO_2$ cycle, utilizes LNG cold energy for lowering the compressor inlet temperature, and uses the heating value of LNG at the burner. The power consumed for the $CO_2$ cycle is investigated in terms of a solid $CO_2$ production ratio. The present study shows that much reduction in both $CO_2$ compression power (only 35% of the power used in conventional dry ice production cycle) and $CO_2$ condenser pressure could be achieved by utilizing LNG cold energy and that high cycle efficiency (55.3% at maximum power condition) in the gas turbine could be accomplished with the adoption of compressor inlet cooling and regenerator. Exergy analysis shows that irreversibility in the combined cycle increases linearly as a solid $CO_2$ production ratio increases and most of the irreversibility occurs in the condenser and the heat exchanger for compressor inlet cooling. Hence, incoming LNG cold energy to the above components should be used more effectively.

Study on Flow Resistance by the Design of Cooling Fan (냉각 팬의 설계에 의한 유동저항에 관한 연구)

  • Cho, Jae-Ung
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.41-47
    • /
    • 2011
  • In this study, the structural analysis of cooling fan is combined with 3-D flow analysis by using CFD on fluid domain. The smoothly cooling flow with optimum design of cooling parts is essential at automotive combustion engine. The fan shape is modeled with three kinds of shape by varying the radius of the fan blade. By the results of analysis, the flow at Model I is more uniform than Model II or III. And the displacement at Model I is less than Model II or III. As the flow resistance of cooling fan at Model I decreases more than Model II or III, the efficiency becomes better.

A Study on the Combined Equipment for the Pre-cooling and the Thawing using the Low Temperature Vacuum System (저온진공기술을 이용한 예냉 및 해동 겸용장치에 관한 연구)

  • 김성규;박영승;최현규;이정혜;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.280-288
    • /
    • 2003
  • We need refrigeration system which can maintain the freshness of agricultural products, because of being distance from a tiller to a consumer. Vacuum Pre-cooling system has an advantage in quality maintenance through vapid cooling down by using latent heat of evaporation of stored products. A number or thawing methods in current use have also several disadvantages in thawing time. discoloration mass loss caused by drying, capital costs and running cost. These damages are, it is claimed, either eliminated or improved by the vacuum thawing system. An experimental study on the pre-cooling for the bean sprouts and cabbage, and thawing for hairtail and croaker by the low temperature vacuum system were carried out. The cabbage cooling time with this Pre-cooling vacuum system took about 60 minutes to reach from $23.2^{circ}C to 4.5^{\circ}C$ at 5 mmHg abs. ($6.66\times10^{-4}$ MPa). The croaker thawing time with this low temperature vacuum thawing system took about 170 minutes to reach from $-10.3^{circ}C to -0.8^{\circ}C$ at 20 mmHg abs ($2.67\tiems10^{-3}$MPa). The vacuum Pre-cooling and thawing system have merits compared with present systems in their short intervals to cool down and to thaw without any quality losses.