• 제목/요약/키워드: Combined Heat Transfer

검색결과 191건 처리시간 0.023초

Radiation-Laminar Free Convection in a Square Duct with Specular Reflection by Absorbing-Emitting Medium

  • Byun, Ki-Hong;Im, Moon-Hyuk
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1346-1354
    • /
    • 2002
  • The purpose of this work is to study the effects of specularly reflecting wall under the combined radiative and laminar free convective heat transfer in an infinite square duct. An absorbing and emitting gray medium is enclosed by the opaque and diffusely emitting walls. The walls may reflect diffusely or specularly. Boussinesq approximation is used for the buoyancy term. The radiative heat transfer is evaluated using the direct discrete ordinates method. The parameters under considerations are Rayleigh number, conduction to radiation parameter, optical thickness, wall emissivity and reflection mode. The differences caused by the reflection mode on the stream line, and temperature distribution and wall heat fluxes are studied. Some differences are observed for the categories mentioned above if the order of the conduction to radiation parameter is less than order of 10$\^$-3/ fer the range of Rayleigh number studied. The differences at the side wall heat flux distributions are observed as long as the medium is optically thin. As the top wall emissivity decreases, the differences between these two modes are increased. As the optical thickness decreases at the fixed wall emissivity, the differences also increase. The difference of the streamlines or the temperature contours is not as distinct as the side wall heat flux distributions. The specular reflection may alter the fluid motion.

플라스틱 온실(溫室)의 열저장(熱貯藏) 시스템의 개발(開發)에 관(關)한 연구(硏究)(II) -수경재배용(水耕栽培用) 태양열(太陽熱) 온실(溫室) 시스템의 열적(熱的) 성능(性能)- (Development of Thermal Storage System in Plastic Greenhouse(II) -Thermal performance of solar greenhouse system for hydroponic culture-)

  • 김용현;고학균;김문기
    • Journal of Biosystems Engineering
    • /
    • 제15권2호
    • /
    • pp.123-133
    • /
    • 1990
  • Thermal performance of a solar heating plastic greenhouse designed for a hydroponic system was studied. The system was constructed with the air-water heat exchanger and thermal storage tank that were combined with hydroponic water beds. Experiments were carried out to investigate the daily average heat stored and released in thermal storage tank, average solar energy collection efficiency, average coefficient of performance, average oil reduction factor of thermal storage system, and the heat transfer coefficient during the nighttime in plastic greenhouse. The results obtained in the present study are summarized as follows. 1. Daily average heat stored in thermal storage tank and released from the thermal storage tank was 1,259 and $797KJ/m^2$ day, respectively. 2. The average solar energy collection efficiency of thermal storage tank was 0.125 during the experiment period. And the average coefficient of performance of thermal storage system in plastic greenhouse was 3.6. 3. The average oil reduction factor of thermal storage system and the heat transfer coefficient during the nighttime in plastic greenhouse were found to be 0.52 and $4.3W/m^2\;hr\;^{\circ}C$, respectively.

  • PDF

지역난방 2차측 유량변화가 내부 열유속 및 에너지소비량에 미치는 영향에 관한 실험적 연구 (The Experimental Study of the Heat Flux and Energy Consumption on Variable Flow Rate for Secondary Side of DHS)

  • 홍성기;조성환
    • 설비공학논문집
    • /
    • 제27권5호
    • /
    • pp.247-253
    • /
    • 2015
  • The presented work demonstrates the effects of flow rate on the secondary side of DHS (District Heating System). Increasing flow rate at the secondary side of DHS decreases energy consumption and time to reach the set-point of the heated room while increasing heat flux on the floor in the heating space. When flow rate increases, the overall heat transfer rate of radiant floor also increases. However, the results also show overall heat transfer rateto not increased linearly and thus the existence of an optimal flow rate for the secondary side of DHS. Control of the radiant floor with hot water may be more effectively accomplished with a combined control strategy that includes heat flux and a temperature set-point. This experimental analysis has been performed using a lab-scaled DHS pilot plant located at Jeonju University in Korea.

하이브리드 자동차 구동시스템용 냉각 유로 최적화에 관한 연구 (OPTIMAL DESIGN FOR COOLING SYSTEM OF DRIVING UNITS FOR HYBRID VEHICLES)

  • 이광희;김재원;안은영
    • 한국전산유체공학회지
    • /
    • 제14권1호
    • /
    • pp.62-69
    • /
    • 2009
  • The cooling system for electric devices of hybrid vehicles is examined. The present system is composed of coolant paths, inlet diffuser and heat sinks whose shapes are diamond and circular. In this work, inlet duct and fin arrays are combined in proposed models and examined by numerical calculations. Nusselt number and Reynolds number are considered for heat transfer performance. Main focus lies on the looking for optimal model for the cooling system adopted to compact driving module of a hybrid vehicle. The optimal model shows uniform flow patterns in the inlet diffuser and secondary flows after the fins attached to heat source. It is found that the vortical flows around the heat sinks are effective for heat removal mechanism.

타원-혼합 2차모멘트 모형에 의한 강제와 자연대류가 복합된 수직 평판 난류유동의 예측 (Prediction of Combined Forced and Natural Turbulent Convection in a Vertical Plane Channel with an Elliptic-Blending Second Moment Closure)

  • 신종근;안정수;최영돈
    • 대한기계학회논문집B
    • /
    • 제29권11호
    • /
    • pp.1265-1276
    • /
    • 2005
  • The elliptic conceptual second moment models for turbulent heat fluxes, which are proposed on the basis of elliptic-blending and elliptic-relaxation equations, are applied to calculate the combined forced and natural turbulent convection in a vertical plane channel. The models satisfy the near-wall balance between viscous diffusion, viscous dissipation and temperature-pressure gradient correlation, and also have the characteristics of approaching its respective conventional high Reynolds number model far away from the wall. Also the models are closely linked to the elliptic blending model which is used for the prediction of Reynolds stress. In order to calibrate the heat flux models, firstly, the distributions of mean temperature and scala flux in fully developed channel flow with constant wall difference temperature are solved by the present models. The buoyancy effect on the turbulent characteristics including the mean velocity and temperature, the Reynolds stress tensor, and the turbulent heat flux vector are examined. In the opposing flow, the turbulent transport is greatly enhanced with both the Reynolds stresses and the turbulent heat fluxes being remarkably increased; whereas, in the aiding flow, the opposite change is observed. The results of prediction are directly compared to the DNS to assess the performance of the model predictions and show that the behaviors of the turbulent heat transfer in the whole flow region are well captured by the present models.

Bed Combustion in a Furnace Enclosure - a Model for the MSW Incinerator

  • Ryu, Chang-Kook;Shin, Dong-Hoon;Choi, Sang-Min
    • 한국연소학회지
    • /
    • 제7권1호
    • /
    • pp.58-64
    • /
    • 2002
  • The bed combustion in an incinerator interacts with the gas flow region through heat and mass transfer. Combined bed combustion and gas flow simulations are performed to investigate this coupled interaction for various operating conditions and furnace configurations. Radiation onto the bed from the furnace is interrelated with the combustion characteristics in the bed, and is also affected by the flow pattern in the gas flow region. Since the contribution of gaseous emission to the total radiation is significant, an adequate flow pattern in a well-designed furnace shape would lead to an increased heat influx on the bed, especially in the early stage of the waste combustion. Advancing the initiation point of the waste combustion can also reduce the size of the lower gas temperature region above the bed, which can be achieved by controlling operating conditions such as the waste feeding rate, the bed height and the primary air flow distribution.

  • PDF

난황항체를 이용한 돼지 대장균 설사증 방제기법 개발 I. 대장균 pilus 항원과 LT로 면역시킨 닭의 면역반응 (Development of preventive method for enterotoxigenic colibacillosis using egg yolk antibodies I. Imune responses of hens immunized against combined Escherichia coli pilus antigens and heat labile toxin)

  • 우승룡;김종만;권창희;이희수;임숙경;김종염
    • 대한수의학회지
    • /
    • 제38권4호
    • /
    • pp.829-836
    • /
    • 1998
  • Immunogenicity of Escherichia coli pilus and LT were evaluated in 20-week-old hens. The antigens were consisted of K88, K99, 987p pilus and heat labile toxin purified from enterotoxigenic Escherichia coli. The durations of antibody titers in sera and egg yolk were investigated by an enzyme-linked immunosorbent assay(ELISA). After first inoculation, antibody titers in sera reached at peak 2 weeks postinoculation. However, peak antibody titers in egg yolk were detected 4 weeks postinoculation, indicating that transfer of immunoglobulin from serum to egg yolk took about two weeks period. Although there were slight reduction in titers, the specific antibodies in egg yolk lasted up to 3 months. Immune responses against monovalent and combined antigens were showed as almost same patterns. The transfer rate of antibodies from serum to egg yolk didn't show any significant differences among three pilus antigens in this study. Considering the concentrations of antigens in each inoculated group, multivalent antigens containing heat labile toxin of E coli were found to be more immunogenic than monovalent antigen in producing specific antibodies. From this experiment, it was demonstrated that multivalent antigens containing three pilus and heat labile toxin could be a promising candidate for the production of egg yolk antibodies for prophylactic use in preventing swine colibacillosis in future.

  • PDF

4각 안내덕트 루프형상에 의한 난류특성변화 수치해석 (A Numerical Study of the Turbulent Flow Characteristics in the Inlet Transition Square Duct Based on Roof Configuration)

  • 유근종;최훈기;최기림;신병주
    • 대한기계학회논문집B
    • /
    • 제33권7호
    • /
    • pp.541-551
    • /
    • 2009
  • Configuration of the inlet transition square duct (hereinafter referred to as "transition duct") for heat recovery steam generator (hereinafter referred to as "HRSG") in combined cycle power plant is limited by the construction type of HRSG and plant site condition. The main purpose of the present study is to analyze the effect of a variation in turbulent flow pattern by roof slop angle change of transition duct for horizontal HRSG, which is influencing heat flux in heat transfer structure to the finned tube bank. In this study, a computational fluid dynamics(CFD) is applied to predict turbulent flow pattern and comparisons are made to 1/12th scale cold model test data for verification. Re-normalization group theory (RNG) based k-$\epsilon$ turbulent model, which improves the accuracy for rapidly strained flow and swirling flow in comparison with standard k-$\epsilon$ model, is used for the results cited in this study. To reduce the amount of computer resources required for modeling the finned tube bank, a porous media model is used.

원전 배합 콘크리트의 외기대류계수에 관한 연구 (Study on the Coefficient of Air Convection for Concrete Mix of Nuclear Power Plant)

  • 이윤;김진근;최명성;송영철;우상균
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.148-151
    • /
    • 2004
  • The hardening of concrete after setting is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. Especially at early ages, this nonlinear distribution has a large influence on the tensile cracking. As a result, in order to predict the exact temperature distribution in concrete structures it is required to examine thermal properties of concrete. In this study, the coefficient of air convection for concrete mix of nuclear power plant, which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind and types of form. The coefficient of air convection obtained from experiment increases with velocity of wind, and its dependance on wind velocity is varied with types of form. This tendency is due to a combined heat transfer system of conduction through form and convection to air. The coefficient of air convection for concrete mix of nuclear power plant obtained from this study was well agreed with the existing models.

  • PDF

IGCC 합성가스 냉각기 상부의 열유동 및 입자거동 특성에 대한 전산해석 연구 (Numerical simulations on flow and particle behaviors in the upper part of a syngas cooler for IGCC)

  • 박상빈;예인수;류창국;김봉근
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.147-148
    • /
    • 2012
  • The syngas produced from coal gasification is cooled down for gas cleaning by a syngas cooler that produces steam. Due to the presence of fly slag in the syngas, erosion, slagging and corrosion especially in the upper part of the syngas cooler may cause major operational problems. This study investigates the flow, heat transfer and particle behaviors in the syngas cooler of a 300MWe IGCC plant by using computational fluid dynamics. For various operational loads and geometry, the gas and particle flows directly impinged on the wall opposite to the syngas inlet, which may lead to erosion of the membrane wall. In the evaporate channels inside the syngas cololr, the particle flows were concentrated more on the outer channel where slagging becomes more serious. The heat transfer to the wall was mainly by convection which was larger on the side wall below the inlet level.

  • PDF