• 제목/요약/키워드: Combined Forecast

검색결과 84건 처리시간 0.024초

A Time Series-Based Statistical Approach for Trade Turnover Forecasting and Assessing: Evidence from China and Russia

  • DING, Xiao Wei
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권4호
    • /
    • pp.83-92
    • /
    • 2022
  • Due to the uncertainty in the order of the integrated model, the SARIMA-LSTM model, SARIMA-SVR model, LSTM-SARIMA model, and SVR-SARIMA model are constructed respectively to determine the best-combined model for forecasting the China-Russia trade turnover. Meanwhile, the effect of the order of the combined models on the prediction results is analyzed. Using indicators such as MAPE and RMSE, we compare and evaluate the predictive effects of different models. The results show that the SARIMA-LSTM model combines the SARIMA model's short-term forecasting advantage with the LSTM model's long-term forecasting advantage, which has the highest forecast accuracy of all models and can accurately predict the trend of China-Russia trade turnover in the post-epidemic period. Furthermore, the SARIMA - LSTM model has a higher forecast accuracy than the LSTM-ARIMA model. Nevertheless, the SARIMA-SVR model's forecast accuracy is lower than the SVR-SARIMA model's. As a result, the combined models' order has no bearing on the predicting outcomes for the China-Russia trade turnover time series.

가치스코어 모형을 이용한 기상정보의 기업 의사결정에 미치는 영향 평가 (The Effect of Meteorological Information on Business Decision-Making with a Value Score Model)

  • 이기광;이중우
    • 산업경영시스템학회지
    • /
    • 제30권2호
    • /
    • pp.89-98
    • /
    • 2007
  • In this paper the economic value of weather forecasts is valuated for profit-oriented enterprise decision-making situations. Value is estimated in terms of monetary profits (or benefits) resulted from the forecast user's decision under the specific payoff structure, which is represented by a profit/loss ratio model combined with a decision function and a value score (VS). The forecast user determines a business-related decision based on the probabilistic forecast, the user's subjective reliability of the forecasts, and the payoff structure specific to the user's business environment. The VS curve for a meteorological forecast is specified by a function of the various profit/loss ratios, providing the scaled economic value relative to the value of a perfect forecast. The proposed valuation method based on the profit/loss ratio model and the VS is adapted for hypothetical sets of forecasts and verified for site-specific probability of precipitation forecast of 12 hour and 24 hour-lead time, which is generated from Korea meteorological administration (KMA). The application results show that forecast information with shorter lead time can provide the decision-makers with great benefits and there are ranges of profit/loss ratios in which high subjective reliability of the given forecast is preferred.

신재생에너지 예측을 위한 송전선로의 계량 데이터 계산 방법 (Calculation Method of Dedicated Transmission Line's Meteological Data to Forecast Renewable Energy)

  • 백자현;김현진;최순호;박상호
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권2호
    • /
    • pp.55-59
    • /
    • 2022
  • This paper introduce Renewable Energy forecasting technology, which is a part of renewable management system. Then, calculation method of dedicated transmission line's meteorological data to forecast renewable energy is suggested. As the case of dedicated transmission line, there is only power output data combined the number of renewable plants' output that acquired from circuit breakers. So it is need to calculate meteorological data for dedicated transmission line that matched combined power output data. this paper suggests two calculation method. First method is select the plant has the largest capacity, and use it's meteorological data as line meteorological data. Second method is average with weight that given according to plants' capacity. In case study, suggested methods are applied to real data. Then use calculated data to Renewable forecasting and analyze the forecasting results.

A Prediction Model of the Sum of Container Based on Combined BP Neural Network and SVM

  • Ding, Min-jie;Zhang, Shao-zhong;Zhong, Hai-dong;Wu, Yao-hui;Zhang, Liang-bin
    • Journal of Information Processing Systems
    • /
    • 제15권2호
    • /
    • pp.305-319
    • /
    • 2019
  • The prediction of the sum of container is very important in the field of container transport. Many influencing factors can affect the prediction results. These factors are usually composed of many variables, whose composition is often very complex. In this paper, we use gray relational analysis to set up a proper forecast index system for the prediction of the sum of containers in foreign trade. To address the issue of the low accuracy of the traditional prediction models and the problem of the difficulty of fully considering all the factors and other issues, this paper puts forward a prediction model which is combined with a back-propagation (BP) neural networks and the support vector machine (SVM). First, it gives the prediction with the data normalized by the BP neural network and generates a preliminary forecast data. Second, it employs SVM for the residual correction calculation for the results based on the preliminary data. The results of practical examples show that the overall relative error of the combined prediction model is no more than 1.5%, which is less than the relative error of the single prediction models. It is hoped that the research can provide a useful reference for the prediction of the sum of container and related studies.

지수평활법을 외생변수로 사용하는 자기회귀 신경망 모형 (Neural network AR model with ETS inputs)

  • 김민재;성병찬
    • 응용통계연구
    • /
    • 제37권3호
    • /
    • pp.297-309
    • /
    • 2024
  • 본 논문에서는 자기회귀 신경망 모형과 지수평활법을 결합(NNARX+ETS 모형)하고 그 성능을 평가한다. 제안된 결합 모형은 시계열 자료를 예측하기 위하여 NNARX 모형의 외생변수로서 ETS 모형의 구성 성분을 활용한다. 이 모형의 주요 아이디어는, 신경망 모형이 원시계열 자료의 과거 시차만을 고려하는 것을 한계를 넘어서서 전통적 시계열 예측 방법인 지수평활법에 의해서 추출된 정제된 시계열 구성 성분까지도 추가로 신경망 모형의 입력값으로 사용하는 것이다. 예측 성능 평가는 2가지 실제 시계열 자료를 사용하였으며 제안된 모형을 NNAR 모형 및 전통적 시계열 분석 방법인 ETS와 ARIMA 모형과 비교하였다.

이웃크기를 이용한 사용자기반과 아이템기반 협업여과의 결합예측 기법 (A Combined Forecast Scheme of User-Based and Item-based Collaborative Filtering Using Neighborhood Size)

  • 최인복;이재동
    • 정보처리학회논문지B
    • /
    • 제16B권1호
    • /
    • pp.55-62
    • /
    • 2009
  • 협업여과는 추천시스템에서 널리 사용되는 기법으로 다른 사용자의 평가를 기반으로 아이템을 추천하는 기법이다. 사용자 데이터베이스를 이용하는 메모리기반 협업여과에는 사용자기반 기법과 아이템기반 기법이 있다. 사용자기반 협업여과는 유사한 선호도를 가지는 이웃사용자들의 선호도를 바탕으로 특정 아이템에 대한 선호도를 예측하는 반면, 아이템기반 협업여과는 아이템들의 유사도를 바탕으로 특정 사용자의 선호도를 예측한다. 본 논문에서는 추천의 성능을 향상시키기 위하여 이웃사용자와 이웃아이템 크기의 비율을 가중치로 하여 사용자기반 예측값과 아이템기반 예측값을 결합함으로써 최종 예측값을 생성하는 결합예측기법을 제안한다. MovieLens 데이터 셋과 BookCrossing 데이터 셋을 이용한 실험을 통해 본 논문에서 제안한 결합예측기법이 영화와 책에 대하여 사용자기반과 아이템기반보다 예측의 정확성을 향상시킴을 보인다.

강우에 의한 돌발 산사태 예·경보 시스템 구축 방안 (Development Method of Early Warning Systems for Rainfall Induced Landslides)

  • 김성필;봉태호;배승종;박재성
    • 한국농공학회논문집
    • /
    • 제57권4호
    • /
    • pp.135-141
    • /
    • 2015
  • The objective of this study is to develop an early warning system for rainfall induced landslides. For this study, we suggested an analysis process using rainfall forecast data. 1) For a selected slope, safety factor with saturated depth was analyzed and safety factor threshold was established (warning FS threshold=1.3, alarm FS threshold=1.1). 2) If rainfall started, saturated depth and safety factor was calculated with rainfall forecast data, 3) And every hour after safety factor is compared with threshold, then warning or alarm can issued. In the future, we plan to make a early warning system combined with the in-situ inclinometer sensors.

Structural monitoring and maintenance by quantitative forecast model via gray models

  • C.C. Hung;T. Nguyen
    • Structural Monitoring and Maintenance
    • /
    • 제10권2호
    • /
    • pp.175-190
    • /
    • 2023
  • This article aims to quantitatively predict the snowmelt in extreme cold regions, considering a combination of grayscale and neural models. The traditional non-equidistant GM(1,1) prediction model is optimized by adjusting the time-distance weight matrix, optimizing the background value of the differential equation and optimizing the initial value of the model, and using the BP neural network for the first. The adjusted ice forecast model has an accuracy of 0.984 and posterior variance and the average forecast error value is 1.46%. Compared with the GM(1,1) and BP network models, the accuracy of the prediction results has been significantly improved, and the quantitative prediction of the ice sheet is more accurate. The monitoring and maintenance of the structure by quantitative prediction model by gray models was clearly demonstrated in the model.

Forecasting Volatility of Stocks Return: A Smooth Transition Combining Forecasts

  • HO, Jen Sim;CHOO, Wei Chong;LAU, Wei Theng;YEE, Choy Leng;ZHANG, Yuruixian;WAN, Cheong Kin
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권10호
    • /
    • pp.1-13
    • /
    • 2022
  • This paper empirically explores the predicting ability of the newly proposed smooth transition (ST) time-varying combining forecast methods. The proposed method allows the "weight" of combining forecasts to change gradually over time through its unique feature of transition variables. Stock market returns from 7 countries were applied to Ad Hoc models, the well-known Generalized Autoregressive Conditional Heteroskedasticity (GARCH) family models, and the Smooth Transition Exponential Smoothing (STES) models. Of the individual models, GJRGARCH and STES-E&AE emerged as the best models and thereby were chosen for constructing the combined forecast models where a total of nine ST combining methods were developed. The robustness of the ST combining forecasts is also validated by the Diebold-Mariano (DM) test. The post-sample forecasting performance shows that ST combining forecast methods outperformed all the individual models and fixed weight combining models. This study contributes in two ways: 1) the ST combining methods statistically outperformed all the individual forecast methods and the existing traditional combining methods using simple averaging and Bates & Granger method. 2) trading volume as a transition variable in ST methods was superior to other individual models as well as the ST models with single sign or size of past shocks as transition variables.

Soft Set Theory Oriented Forecast Combination Method for Business Failure Prediction

  • Xu, Wei;Xiao, Zhi
    • Journal of Information Processing Systems
    • /
    • 제12권1호
    • /
    • pp.109-128
    • /
    • 2016
  • This paper presents a new combined forecasting method that is guided by the soft set theory (CFBSS) to predict business failures with different sample sizes. The proposed method combines both qualitative analysis and quantitative analysis to improve forecasting performance. We considered an expert system (ES), logistic regression (LR), and support vector machine (SVM) as forecasting components whose weights are determined by the receiver operating characteristic (ROC) curve. The proposed procedure was applied to real data sets from Chinese listed firms. For performance comparison, single ES, LR, and SVM methods, the combined forecasting method based on equal weights (CFBEWs), the combined forecasting method based on neural networks (CFBNNs), and the combined forecasting method based on rough sets and the D-S theory (CFBRSDS) were also included in the empirical experiment. CFBSS obtains the highest forecasting accuracy and the second-best forecasting stability. The empirical results demonstrate the superior forecasting performance of our method in terms of accuracy and stability.