• Title/Summary/Keyword: Combined Environmental Factors

Search Result 250, Processing Time 0.032 seconds

Effects of Combined Environmental Factors on Mechanical and Thermal Analysis Properties of Graphite/Epoxy Composites (복합적인 환경인자가 탄소섬유강화 복합재의 기계적 및 열분석 특성에 미치는 영향)

  • Lee, Sang-Jin;Lee, Jong-Keun;Yoon, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1416-1425
    • /
    • 2002
  • In this study, the effects of combined environmental factors on mechanical and thermal analysis properties of graphite/epoxy composites were evaluated by the use of an accelerated aging test. Environmental factors such as temperature, moisture. and ultraviolet were considered. A xenon-arc lamp was utilized for ultraviolet light. and exposure times of up to 3000 hours were applied. Several types of specimens - tensile. bending, and shear specimens those are transverse to the fiber direction, and bending specimens those are parallel to the tiber direction - were used to investigate the effects of environmental factors on mechanical properties of the composites. Also, glass transition temperature, storage shear modulus, loss shear modulus, and tan ${\delta}$ were measured as a function of exposure times through a dynamic mechanical analyzer. In addition. a suitable testing method for determining the effect of environmental factors on mechanical properties is suggested by comparing the results from using two different types of strain measuring sensors. Finally, composite surfaces exposed to environmental factors were examined using a scanning electron microscope.

A Study of Aging Effect for Train Carbody Using Accelerated Aging Tester

  • Nam, Jeong-Pyo;LI, Qingfen;LI, Hong
    • International Journal of Railway
    • /
    • v.1 no.3
    • /
    • pp.113-116
    • /
    • 2008
  • The long-tenn exposure of polymeric composite materials to extreme-use environments, such as pressure, temperature, moisture, and load cycles, results in changes in the original properties of the material. In this study, the effect of combined environmental factors such as ultraviolet ray, high temperature and high moisture on mechanical and thermal analysis properties of glass fabric and phenolic composites are evaluated through a 2.5 KW accelerated environmental aging tester. The environmental factors such as temperature, moisture and ultraviolet ray applied of specimens. A xenon-arc lamp is utilized for ultraviolet light and exposure time of up to 3000 hours are applied. Several types of specimens - tensile, bending, and shear specimens that are warp direction and fill direction are used to investigate the effects of environmental factors on mechanical properties of the composites. Mechanical degradations for tensile, bending and shear properties are evaluated through a Universal Testing Machine (UTM). Also, storage shear modulus, loss shear modulus and tan a are measured as a function of exposure time through a Dynamic Mechanical Analyzer (DMA). From the experimental results, changes in material properties of glass fabric and phenolic composites are shown to be slightly degraded due to combined environmental effects.

  • PDF

Synergistic Effects of Ionizing Radiation and Mercury Chloride on Cell Viability in Fish Hepatoma Cells (이온화 방사선 및 염화수은 처리에 따른 어류 간암세포의 생존능 평가)

  • Han, Min;Hyun, Kyung-Man;Nili, Mohammad;Hwang, In-Young;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.2
    • /
    • pp.140-145
    • /
    • 2009
  • All organisms are being exposed to harmful factors present in the environmental. The combined action of various factors is a distinguishing feature of modern life. An interaction between two chemicals is considered as synergistic when the effect produced is greater than the sum of the two single responses. The biological effects due to the combined action of ionizing radiation with the other factor are hard to estimate and predict in advance. In the current study, we investigated the synergistic effects between ionizing and $HgCl_2$ using fish hepatoma cells (PLHC-1 cells). The results showed a dramatic decrease of cell viability after simultaneous treatment of PLHC-1 cells with ionizing radiation and $HgCl_2$. Neiither of the two had any cytotoxic effect when treated alone. The cytotoxicity of ionizing radiation was enhanced in the presence of $HgCl_2$. The synergistic effects were observed after exposure of the PLHC-1 cells to ionizing radiation combined with $HgCl_2$. The synergistic interaction was due to an increase of irreversibly damaged cells after the combined exposure. Analysis of the extent of synergistic interaction enables to make quantitative estimation of irreversibly damaged cells after the combined exposure. The present study suggests that PLHC-1 cells can serve as rapid screening tools for detecting the toxicity of harmful factors.

Effect of Combined Environmental Factors on Adhesive Shear Strengths and Chemical Structures of Adhesives (복합적 환경인자의 영향에 의한 접착제의 접착전단강도 및 화학구조 변화)

  • Hwang, Young-Eun;Yoon, Sung-Ho
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • Adhesive shear strengths of the established adhesives and the alternative adhesives were evaluated and their chemical structures were analyzed in order to investigate the possibility of replacing the established adhesives with the alternative adhesives applicable to the seeker for the guided missiles. Two types of the adhesives such as the structural adhesives and the sealant adhesives were considered. Those adhesives were exposed to the combined environmental factors consisting of temperature, moisture and ultraviolet over 1000 hours. Adhesive shear test was conducted to evaluate adhesive shear strengths and ATR FT-IR was utilized to investigate chemical structures. According to the results, the adhesive shear strengths of the alternative adhesives revealed higher than those of the established adhesives. Also the alternative adhesives were more stable to the combined environmental condition than the established adhesives. Therefore, it is found that the established adhesives were able to be replaced by the alternative adhesives.

Concrete structures under combined mechanical and environmental actions: Modelling of durability and reliability

  • Vorechovska, Dita;Somodikova, Martina;Podrouzek, Jan;Lehky, David;Teply, Bretislav
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.99-110
    • /
    • 2017
  • Service life assessments which do not include the synergy between mechanical and environmental loading are neglecting a factor that can have a significant impact on structural safety and durability assessment. The degradation of concrete structure is a result of the combined effect of environmental and mechanical factors. In order to make service life design realistic it is necessary to consider both of these factors acting simultaneously. This paper deals with the advanced modelling of concrete carbonation and chloride ingress into concrete using stochastic 1D and 2D models. Widely accepted models incorporated into the new fib Model Code 2010 are extended to include factors that reflect the coupled effects of mechanical and environmental loads on the durability and reliability of reinforced concrete structures. An example of cooling tower degradation by carbonation and an example of a bended reinforced concrete beam kept for several years in salt fog are numerically studied to show the capability of the stochastic approach. The modelled degradation measures are compared with experimental results, leading to good agreement.

Association with Combined Occupational Hazards Exposure and Risk of Metabolic Syndrome: A Workers' Health Examination Cohort 2012-2021

  • Dongmug Kang ;Eun-Soo Lee ;Tae-Kyoung Kim;Yoon-Ji Kim ;Seungho Lee ;Woojoo Lee ;Hyunman Sim ;Se-Yeong Kim
    • Safety and Health at Work
    • /
    • v.14 no.3
    • /
    • pp.279-286
    • /
    • 2023
  • Background: This study aimed to evaluate the association between exposure to occupational hazards and the metabolic syndrome. A secondary objective was to analyze the additive and multiplicative effects of exposure to risk factors. Methods: This retrospective cohort was based on 31,615 health examinees at the Pusan National University Yangsan Hospital in Republic of Korea from 2012-2021. Demographic and behavior-related risk factors were treated as confounding factors, whereas three physical factors, 19 organic solvents and aerosols, and 13 metals and dust were considered occupational risk factors. Time-dependent Cox regression analysis was used to calculate hazard ratios. Results: The risk of metabolic syndrome was significantly higher in night shift workers (hazard ratio = 1.45: 95% confidence interval = 1.36-1.54) and workers who were exposed to noise (1.15:1.07-1.24). Exposure to some other risk factors was also significantly associated with a higher risk of metabolic syndrome. They were dimethylformamide, acetonitrile, trichloroethylene, xylene, styrene, toluene, dichloromethane, copper, antimony, lead, copper, iron, welding fume, and manganese. Among the 28 significant pairs, 19 exhibited both positive additive and multiplicative effects. Conclusions: Exposure to single or combined occupational risk factors may increase the risk of developing metabolic syndrome. Working conditions should be monitored and improved to reduce exposure to occupational hazards and prevent the development of the metabolic syndrome.

Effect of Combined Environmental Factors on Degradation Behavior of Carbon Fiber/Epoxy Composites (복합적인 환경인자의 영향에 따른 탄소섬유/에폭시 복합재의 열화 특성)

  • Hwang, Young-Eun;Lee, Gil-Hyung;Yoon, Sung-Ho
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.37-42
    • /
    • 2009
  • Thermal analysis properties and chemical structure of carbon fiber/epoxy composites under environmental exposure were examined using an accelerated aging tester which can simulate real weather conditions such as temperature, moisture and ultraviolet. The composite specimens were exposed to combined environmental factors up to 3000 hours. Thermal analysis properties and chemical structure of the composites were evaluated with various exposure times through Modulated DSC and FTIR. According to the results of Modulated DSC, the glass transition temperature increased as exposure time increased due to the formation of network structures in the composites. Also endotherm peaks of enthalpy relaxation related to physical aging that can affect the properties of the composites were observed as exposure time increased. From the results of FTIR, it was found that the location of the peaks was little affected by exposure time, but the intensity of the peaks slightly decreased as exposure time increased due to the curing reaction in the epoxy group.

Aging Characteristics of Glass Fabric/Phenolic Composites in Train Carbody (철도차량용 유리섬유직물/페놀릭 복합재의 가속노화 특성)

  • Yoon Sung-Ho;Nam Jung-Pyo;Hwang Young-Eun;Shin Kwang-Bok
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.352-357
    • /
    • 2004
  • In this study. the effects of combined environmental factors on mechanical and thermal analysis properties of graphite/epoxy composites were evaluated through a 2.5KW accelerated environmental aging tester. Environmental factors such as temperature. moisture, and ultraviolet were considered. A xenon-arc lamp was utilized for ultraviolet light. and exposure times of up to 3000 hours were applied. Several types of specimens - tensile, bending, and shear specimens those are warp direction and fill direction were used to investigate the effects of environmental factors on mechanical properties of the composites. The glass fabric $\sharp$650/AP300 was used for the fabrication of specimens. Mechanical degradations for tensile, bending and shear properties were evaluated through a UTM. Also. storage shear modulus. loss shear modulus, and tan $\delta$ were measured as a function of exposure times through a dynamic mechanical analyzer. Finally exposed surfaces of the composites were examined using II scanning electron microscope.

  • PDF

Consequence Analysis on the Leakage Accident of Hydrogen Fuel in a Combined Cycle Power Plant: Based on the Effect of Regional Environmental Features (복합화력발전소 내 수소연료 적용 시 누출 사고에 대한 피해영향범위 분석: 지역별 환경 특성 영향에 기반하여)

  • HEEKYUNG PARK;MINCHUL LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.698-711
    • /
    • 2023
  • Consequence analysis using an ALOHA program is conducted to calculate the accidental impact ranges in the cases of hydrogen leakage, explosion, and jet fire in a hydrogen fueled combined cycle power plant. To evaluate the effect of weather conditions and topographic features on the damage range, ALOHA is executed for the power plants located in the inland and coastal regions. The damage range of hydrogen leaked in coastal areas is wider than that of inland areas in all risk factors. The obtained results are expected to be used when designing safety system and establishing safety plans.

Aging Characteristics of Glass Fabric/Phenolic Composites for Tilting Train Using Accelerated Aging Tester (가속노화시험장치를 적용한 틸팅열차용 유리섬유직물/페놀릭 복합재의 노화특성 평가)

  • Yoon Sung-Ho;Nam Jung-Pyo;Hwang Young-Eun;Lee Sang-Jin;Shin Kwang-Bok
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.2
    • /
    • pp.188-194
    • /
    • 2005
  • Aging characteristics of glass fabric/phenolic composites for tilting train subjected to combined environmental aging factors were investigated. A 2.5KW accelerated aging tester with a xenon-arc lamp was used to provide environmental aging factors such as temperature, moisture, and ultraviolet. A series of aging tests were conducted up to 3000 hours and several types of specimens were prepared along the warp direction and the fill direction. Mechanical degradations for tensile, flexural, and shear properties were evaluated as a function of exposure times through a material testing system. Thermal analysis properties such as storage shear modulus, loss shear modulus, and tan 3 were measured through a dynamic mechanical analyzer. Finally exposed surfaces of the composites were examined using a scanning electron microscope. According to the experimental results, mechanical properties and thermal analysis properties of glass fabric/phenolic composites were found to be slightly degraded as a function of exposure times due to combined environmental effects.