• 제목/요약/키워드: Combined Effort

검색결과 159건 처리시간 0.042초

사다리꼴형상 투과성 수중방파제에 의한 정현파의 Bragg 반사 (Bragg Reflection of Sinusoidal Waves due to Trapezoidal Submerged Porous Breakwaters)

  • 전찬후;조용식;이종인
    • 한국수자원학회논문집
    • /
    • 제36권5호
    • /
    • pp.741-749
    • /
    • 2003
  • 본 연구에서는 사다리꼴형상 투과성 수중방파제에 의한 정현파의 Bragg반사에 대해 수리모형실험과 수치모형실험을 수행하였으며, 두 실험결과를 비교하였다. 수치해석에 적용된 모형에서는 공간 평균된 Wavier-Stokes 방정식을 투과체 내에서의 지배방정식으로 사용하였고, 자유수면변위를 추적하기 위해 VOF기법을 적용하였다. 수리실험결과와 수치해석결과는 비교적 잘 일치하였으며, 투과성 수중방파제에 의한 반사계수는 불투과성에 비해 낮게 나타나고, 방파제의 배열이 증가함에 따라 반사계수는 증가함을 보였다.

Rh-doped carbon nanotubes as a superior media for the adsorption of O2 and O3 molecules: a density functional theory study

  • Cui, Hao;Zhang, Xiaoxing;Yao, Qiang;Miao, Yulong;Tang, Ju
    • Carbon letters
    • /
    • 제28권
    • /
    • pp.55-59
    • /
    • 2018
  • Transition-metal-embedded carbon nanotubes (CNTs) have been accepted as a novel type of sensing material due to the combined advantage of the transition metal, which possesses good catalytic behavior for gas interaction, and CNTs, with large effective surface areas that present good adsorption ability towards gas molecules. In this work, we simulate the adsorption of $O_2$ and $O_3$ onto Rh-doped CNT in an effort to understand the adsorbing behavior of such a surface. Results indicate that the proposed material presents good adsorbing ability and capacities for these two gases, especially $O_3$ molecules, as a result of the relatively large conductivity changes. The frontier molecular orbital theory reveals that the conductivity of Rh-CNT would undergo a decrease after the adsorption of two such oxidizing gases due to the lower electron activity and density of this media. Our calculations are meaningful as they can supply experimentalists with potential sensing material prospects with which to exploit chemical sensors.

Energy Efficient Design of a Jet Pump by Ensemble of Surrogates and Evolutionary Approach

  • Husain, Afzal;Sonawat, Arihant;Mohan, Sarath;Samad, Abdus
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권3호
    • /
    • pp.265-276
    • /
    • 2016
  • Energy systems working coherently in different conditions may not have a specific design which can provide optimal performance. A system working for a longer period at lower efficiency implies higher energy consumption. In this effort, a methodology demonstrated by a jet pump design and optimization via numerical modeling for fluid dynamics and implementation of an evolutionary algorithm for the optimization shows a reduction in computational costs. The jet pump inherently has a low efficiency because of improper mixing of primary and secondary fluids, and multiple momentum and energy transfer phenomena associated with it. The high fidelity solutions were obtained through a validated numerical model to construct an approximate function through surrogate analysis. Pareto-optimal solutions for two objective functions, i.e., secondary fluid pressure head and primary fluid pressure-drop, were generated through a multi-objective genetic algorithm. For the jet pump geometry, a design space of several design variables was discretized using the Latin hypercube sampling method for the optimization. The performance analysis of the surrogate models shows that the combined surrogates perform better than a single surrogate and the optimized jet pump shows a higher performance. The approach can be implemented in other energy systems to find a better design.

Extension of Direct Displacement-Based Design to Include Higher-Mode Effects in Planar Reinforced Concrete Frame Buildings

  • 아베베 베카 하일루;이종세
    • 한국지진공학회논문집
    • /
    • 제22권5호
    • /
    • pp.299-309
    • /
    • 2018
  • Now that problems with force-based seismic design have been clearly identified, design is inclined toward displacement-based methods. One such widely used method is Direct-Displacement-Based Design (DDBD). Yet, one of the shortcomings of DDBD is considering higher-mode amplification of story shear, moments, and displacements using equations obtained from limited parametric studies of regular planar frames. In this paper, a different approach to account for higher-mode effects is proposed. This approach determines the lateral secant stiffness of the building frames that fulfill the allowable inter-story drift without exceeding the desired story displacements. Using the stiffness, an elastic response spectrum analysis is carried out to determine elastic higher-mode force effects. These force effects are then combined with DDBD-obtained first-mode force effects using the appropriate modal superposition method so that design can be performed. The proposed design procedure is verified using Nonlinear Time History Analysis (NTHA) of twelve planar frames in four categories accounting for mass and stiffness irregularity along the height. In general, the NTHA response outputs compared well with the allowable limits of the performance objective. Thus, it fulfills the aim of minimizing the use of NTHA for planar frame buildings, thereby saving computational resources and effort.

유동장 데이터의 입체적 가시화를 위한 3-D 가상현실 기법의 적용 (STUDY ON 3-D VIRTUAL REALITY FOR STEREOSCOPIC VISUALIZATION OF FLOW FIELD DATA)

  • 하재황;김병수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.347-351
    • /
    • 2010
  • In this paper, our effort to apply 3-D Virtual Reality system for stereoscopic visualization of flow data is briefly described. This study is an extension of our previous and on-going research efforts to develop DATA(Data Analysis and Visualization Application) program, which is a data visualization program developed by using Qt as GUI development environment and OpenGL as graphic library. The program is developed upon the framework of object-oriented programming and it was originally developed by using Qt 3.3.3 environment. In this research the program is converted into a Qt 4.3.3-compatible version, and this new version is developed on Visual Studio 2005. And to achieve a stereoscopic viewing capability, two graphic windows are used to render its own viewing image for the lift and right eye respectively. These two windows are merged into one image using 3D monitor and the viewers can see the data visualization results with stereoscopic depth effects by using polarizing glasses. In this paper three dimensional data visualization with stereoscopic technique combined with 3D Monitor is demonstrated, and the current achievement would be a good start-up for further development of low-cost high-quality stereoscopic data visualization system.

  • PDF

Packaging MEMS, The Great Challenge of the $21^{st}$ Century

  • Bauer, Charles-E.
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2000년도 Proceedings of 5th International Joint Symposium on Microeletronics and Packaging
    • /
    • pp.29-33
    • /
    • 2000
  • MEMS, Micro Electro-Mechanical Systems, present one of the greatest advanced packaging challenges of the next decade. Historically hybrid technology, generally thick film, provided sensors and actuators while integrated circuit technologies provided the microelectronics for interpretation and control of the sensor input and actuator output. Brought together in MEMS these technical fields create new opportunities for miniaturization and performance. Integrated circuit processing technologies combined with hybrid design systems yield innovative sensors and actuators for a variety of applications from single crystal silicon wafers. MEMS packages, far more simple in principle than today's electronic packages, provide only physical protection to the devices they house. However, they cannot interfere with the function of the devices and often must actually facilitate the performance of the device. For example, a pressure transducer may need to be open to atmospheric pressure on one side of the detector yet protected from contamination and blockage. Similarly, an optical device requires protection from contamination without optical attenuation or distortion being introduced. Despite impediments such as package standardization and complexity, MEMS markets expect to double by 2003 to more than $9 billion, largely driven by micro-fluidic applications in the medical arena. Like the semiconductor industry before it. MEMS present many diverse demands on the advanced packaging engineering community. With focused effort, particularly on standards and packaging process efficiency. MEMS may offer the greatest opportunity for technical advancement as well as profitability in advanced packaging in the first decade of the 21st century! This paper explores MEMS packaging opportunities and reviews specific technical challenges to be met.

  • PDF

사각형형상 불투과성 수증방파제에 의한 불규칙파의 변형 (Transformation of Irregular Waves due to Rectangular Submerged Non-porous Breakwaters)

  • 황종길;이승협;조용식
    • 한국수자원학회논문집
    • /
    • 제37권11호
    • /
    • pp.949-958
    • /
    • 2004
  • 본 연구에서는 사각형형상 수중방파제에 의한 불규칙파의 반사에 대하여 수리모형실험과 수치모형실험을 수행한 후 실험결과를 비교하였다. 수치해석 모형에서는 Reynolds 방정식을 지배방정식으로 사용하고 난류해석을 위해 k-$\varepsilon$모델을 적용하였으며, 자유수면변위를 추적하기 위해 VOF기법을 사용하였다. 수리모형실험과 수치모형실험의 결과는 서로 잘 일치하였으며, 수중방파제의 배열이 증가함에 따라 반사율은 증가하였다.

Sequential patient recruitment monitoring in multi-center clinical trials

  • Kim, Dong-Yun;Han, Sung-Min;Youngblood, Marston Jr.
    • Communications for Statistical Applications and Methods
    • /
    • 제25권5호
    • /
    • pp.501-512
    • /
    • 2018
  • We propose Sequential Patient Recruitment Monitoring (SPRM), a new monitoring procedure for patient recruitment in a clinical trial. Based on the sequential probability ratio test using improved stopping boundaries by Woodroofe, the method allows for continuous monitoring of the rate of enrollment. It gives an early warning when the recruitment is unlikely to achieve the target enrollment. The packet data approach combined with the Central Limit Theorem makes the method robust to the distribution of the recruitment entry pattern. A straightforward application of the counting process framework can be used to estimate the probability to achieve the target enrollment under the assumption that the current trend continues. The required extension of the recruitment period can also be derived for a given confidence level. SPRM is a new, continuous patient recruitment monitoring tool that provides an opportunity for corrective action in a timely manner. It is suitable for the modern, centralized data management environment and requires minimal effort to maintain. We illustrate this method using real data from two well-known, multicenter, phase III clinical trials.

투과전자현미경을 이용한 상전이형 광디스크의 미세조직 관찰 (Microstructural Observation of Phase Change Optical Disk by TEM)

  • 김수철;김긍호
    • Applied Microscopy
    • /
    • 제29권4호
    • /
    • pp.493-498
    • /
    • 1999
  • 기억저장매체로서 광디스크의 개발이 활발히 진행되고 있으며 최근의 레이저 기술의 발전, 제조기술의 발전에 따른 기억밀도의 증가로서 기존의 자기기록매체와 경쟁을 하고 있다. 기록밀도의 증대와 신뢰성의 향상을 위하여 다층박막 구조를 가지는 광디스크의 미세구조는 더욱 복잡하며 소형화되고 있다. 이종의 물질로 구성된 다층박막형 광디스크의 미세구조 관찰 및 분석을 위해서는 투과전자현미경과 같은 미소영역 분석법이 필수적이며 비교적 간단하고 신뢰성 높은 시편준비법의 확립이 선행되어야 한다. 본 연구에서는 투과전자현미경 분석을 위한 광디스크의 평면 및 단면시료 제작법을 제시하고 제조된 시편으로부터 얻어진 광디스크의 미세구조 분석결과를 보고한다.

  • PDF

e-NIE 학습이 초등학생의 과학탐구능력 및 과학적 태도에 미치는 영향 (The Impact of e-NIE Based Lesson on Science Process skills and Scientific Attitudes of Elementary Students)

  • 한종학;이형철
    • 대한지구과학교육학회지
    • /
    • 제7권2호
    • /
    • pp.253-265
    • /
    • 2014
  • This study was aimed to find the impact of science lessons using e-NIE on science process skills and scientific attitudes of elementary students in comparison with that of traditional lessons. Subjects of this study were 5th graders from two separate classes at a elementary school located in U city. And the experiment has been conducted throughout 10 lessons for the duration of total 12 weeks, where one class, experimental group, attended e-NIE based lessons, while the other, comparative group, with traditional lessons for the same period, in an effort to collect both pre and post test results to compare. Findings from this study were briefly listed below: Firstly, e-NIE applied lessons were more effective in improving science process skills than traditional lessons, especially in the domain of integrated science process skills, with meaningful difference. Secondly, lessons combined with e-NIE enhanced scientific attitudes of elementary students more than traditional lessons with meaningful difference.