• Title/Summary/Keyword: Combined Deterioration

Search Result 178, Processing Time 0.024 seconds

A Study on the Scaling Deterioration and Resistance to Freezing of Concrete by Containing Chlorides (염화물 함유에 의한 콘크리트의 내동해성 및 표면열화에 관한 연구)

  • Park Joo Houn;Kim Gyu Yong;Kim Han Jun;Kwon Yeong Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.372-375
    • /
    • 2004
  • Scaling deterioration and resistance to freezing of port concrete structures due to the combined effects of chemical actions by containning chlorides and the freeze-thaw action is also a problem which has not yet been fundamentally solved. Furthermore, deterioration of concrete surface was considered as accelerate factor of concrete durability tended to decrease. Therefore, we considered the scaling measuring method and decreasing influence of durability of concrete according to kind of binders, such as OPC, Slag, Slag+Fa, due to freeze and thaw of concrete by containing chlorides. As a results of this study, it was effective method of scaling deterioration and resistance freewing of concrete, and confirmed the salt deterioration resistance effect to use slag binder against to containing chlorides.

  • PDF

A Study on the Concrete Scaling Deterioration due to Freezing and Thawing of Sea Water (해수동결융해작용에 의한 콘크리트의 표면열화에 관한 연구)

  • 김규용;박주현;김규동;이승훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.54-57
    • /
    • 2003
  • Scaling deterioration of port concrete structures due to the combined effects of chemical actions by seawater and the freeze-thaw action is also a problem which has not yet been fundamentally solved. Furthermore, deterioration of concrete surface was considered as accelerate factor of concrete durability tended to decrease. Therefore, we considered the scaling measuring method and decreasing influence of durability of concrete according to kind of binders, such as OPC, Slag, Slag+Fa, due to freeze and haw of sea water. As a results of this study, it was effective method of scaling deterioration of concrete, and confirmed the salt deterioration resistance effect to use slag binder against to sea water.

  • PDF

An Experimental Study on the Durability Evaluation of Polymer Cement Restoration Materials for Deteriorated Reinforced Concrete Structures (성능저하된 철근콘크리트구조물 폴리머시멘트계 보수용 단면복구재의 내구성 평가에 관한 실험적 연구)

  • Kim, Moo-Han;Kim, Jae-Hwan;Cho, Bong-Suk;Park, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.123-130
    • /
    • 2006
  • The duties of the restorative materials are to bear up against stress and to protect reinforcement corrosion. So the restorative materials are estimated by various kinds of strength, permeability and etc, But, in case of existing performance evaluation of restorative materials, because various deterioration factors are separately acted, the system of performance evaluation is different from that of combined deterioration of real structure and it is difficult to evaluate the exact performance of restorative materials. In this study, to evaluate Performance of restorative materials, we compare their korea standard properties in terms of compressive and bending strength and permeability of water and air with real durability for carbonation, salt damage and actual reinforcement corrosion like ratio of corrosion area. weight reduction and corrosion velocity of steel bar under environment of combined deterioration. The results showed that strength and permeability of restorative materials are similar but their resistance to carbonation, salt damage and actual reinforcement corrosion are very different.

An Investigation on the Quality of High-Strength Shotcrete and the Long Term Durability using Combined Deterioration Test (고강도 숏크리트의 품질평가와 복합열화시험을 통한 장기내구성 검토)

  • Ma, Sang-Joon;Kim, Dong-Min;Choi, Jae-Seok;Ahn, Kyung-Chul;Kim, Sun-Myung;Ko, Jin-Kon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.906-915
    • /
    • 2006
  • In this study, Field test was performed using high-quality additions and accelerators to obtain the improvement of the strength on domestic shotcrete and quality test based on EFNARC was performed. In addition, Deterioration test that combined the Freezing-thawing and Carbonation was also performed in order to investigate a long-term durability of high-strength shotcrete. As a result of field test, a promotion ratio of early strength is $90\sim97%$ in case of using alkali-free accelerators. And a compressive strength of shotcrete using Micro-silica fume was $45.2\sim55.8MPa$ and the flexible strength was $5.01\sim6.66MPa$, so a promotion ratio of strength was $37\sim79%$, $17\sim61%$ respectively. It was showed that increment effect of strength by the Micro-silica fume replacement of $7.5\sim10%$ for cement mass was remarkable. It was also realized that application of Micro-silica fume to shotcrete reduced deterioration and improved a long-term durability of shotcrete.

  • PDF

Strength and failure characteristics of the rock-coal combined body with single joint in coal

  • Yin, Da W.;Chen, Shao J.;Chen, Bing;Liu, Xing Q.;Ma, Hong F.
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1113-1124
    • /
    • 2018
  • Geological dynamic hazards during deep coal mining are caused by the failure of a composite system consisting of the rock and coal layers, whereas the joint in coal affects the stability of the composite system. In this paper, the compression test simulations for the rock-coal combined body with single joint in coal were conducted using $PFC^{2D}$ software and especially the effects of joint length and joint angle on strength and failure characteristics in a rock-coal combined body were analyzed. The joint length and joint angle exhibit a deterioration effect on the strength and affect the failure modes. The deterioration effect of joint length of L on the strength can be neglected with a tiny variation at ${\alpha}$ of $0^{\circ}$ or $90^{\circ}$ between the loading direction and joint direction. While, the deterioration effect of L on strength are relatively large at ${\alpha}$ between $30^{\circ}$ and $60^{\circ}$. And the peak stress and peak strain decrease with the increase of L. Additionally, the deterioration effect of ${\alpha}$ on the strength becomes larger with the increase of L. With the increase of ${\alpha}$, the peak stress and peak strain first decrease and then increase, presenting "V-shaped" curves. And the peak stress and peak strain at ${\alpha}$ of $45^{\circ}$ are the smallest. Moreover, the failure mainly occurs within the coal and no apparent failure is observed for rock. At ${\alpha}$ between $30^{\circ}$ and $60^{\circ}$, the secondary shear cracks generated in or close to the joint tips, cause the structural instability failure of the combined body. Therefore, their failure models present as a shear failure along partial joint plane direction and partially cutting across the coal body or a shear failure along the joint plane direction. However, at ${\alpha}$ of $60^{\circ}$ and L of 10 mm, the "V-shaped" shear cracks cutting across the coal body cause its final failure. While crack nucleations at ${\alpha}$ of $0^{\circ}$ or $90^{\circ}$ are randomly distributed in the coal, the failure mode shows a V-shaped shear failure cutting across the coal body.

Deterioration Evaluation for Industrial Pipeline by Sectionalizing (산업시설 배관의 섹션화에 의한 노후도 평가)

  • Min, Hyuk-Ki;Kim, Sang-Bum;Kim, Byung-Woo;Kim, Hyoung-Ki;Park, Yool
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.3
    • /
    • pp.123-130
    • /
    • 2016
  • This study introduced deterioration evaluation item and criteria that could be applied to industrial facilities with the most widely used carbon steel pipe installed for ordinary piping (KSD 3507). Experimental industrial pipes were evaluated with pipe sectionalizing method combined with the established evaluation item and criteria to measure and manage semi-continuously for overall piping system. After applying outcomes from this study to a plant of incineration facility, a 42% saving in repairing and remodeling cost was achieved.