• 제목/요약/키워드: Combined Cycle Power Plant

Search Result 196, Processing Time 0.04 seconds

Study of fuel cell CHP-technology on electricity generation sector using LEAP-model (LEAP 모형을 이용한 연료전지 열병합발전설비 도입에 따른 온실가스배출저감 잠재량 분석)

  • Shin, Seung-Bok;Jun, Soo-Young;Song, Ho-Jun;Park, Jong-Jin;Maken, Sanjeev;Park, Jin-Won
    • Journal of Energy Engineering
    • /
    • v.18 no.4
    • /
    • pp.230-238
    • /
    • 2009
  • We study about small gas engine and fuel cell CHP (Combined Heat and Power) as the technologies for energy conservation and $CO_2$ emissions reduction. Korea government plans to use them in near future. This study quantitatively analyzed energy consumption and $CO_2$ emissions reduction potential of small CHP instead of existing electric power plant (coal steam, combined cycle and oil steam) using LEAP (Long-range Energy Alternative Planning system) as energy-economic model. Three future scenarios are discussed. In every scenario similar condition for each CHP is used. Alternative scenario I: about 6.34% reduction in $CO_2$ emissions is observed in 2019 due to increase in amount of gas engine CHP and fuel cell CHP while coal use in thermoelectric power plant is almost stagnant. In alternative scenario II: a small 0.8% increase in $CO_2$ emission is observed in 2019 keeping conditions similar to alternative scenario I but using natural gas in combined cycle power plant instead of coal. During alternative scenario II overall $CO_2$ emission reduction is observed in 2019 due to added heat production from CHP. Alternative scenario III: about 0.8% reduction in $CO_2$ emissions is observed in 2019 using similar CHP as AS I and AS II. Here coal and oil are used in thermoelectric power plant but the quantity of oil and coal is almost constant for next decade.

Extraction Technique of Communication Packet between PMS server and Clients in Combined Cycle Power Plant (복합화력 발전소의 PMS 서버와 Client 간의 통신 패킷 추출 기법에 관한 연구)

  • Kang Feel-Soon;Hyun Surk-Hwan;Cha Dong-Jin;Chung Jae-Hwa;Seo Seok-Bin;Ahn Dal-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.681-684
    • /
    • 2006
  • A new packet extraction program is presented to extract communication packet between a server and clients. The extracted packet source is used to develope a special driver to access general clients to the server. The proposed scheme employs a relay server to take a specified packet among a large number of packets on the same network. The proposed method is tested in PMS (Plant Management System) sewer and ProDAS (Process Data Aquisition and Analysis System) in a combined cycle power plant. The developed scheme can be applied for extracting a specified communication packet between the general server and client.

  • PDF

Modeling of Damage Effects Caused by Ammonia Leakage Accidents in Combined Cycle Power Plant (복합화력발전소 내 암모니아 누출 사고에 의한 피해영향 모델링)

  • Eun-Seong Go;Kyeong-Sik Park;Dong-Min Kim;Young-Tai Noh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.3
    • /
    • pp.1-15
    • /
    • 2023
  • This study focuses on modeling the impact of ammonia leakage from the storage tank in a combined cycle power plant's flue gas denitrification facility. It employs accident impact assessments and diffusion models to determine the optimal scenarios for ammonia storage tank leakage accidents. The study considers the operating conditions of variables as standard conditions for predicting the extent of damage. The Taean combined cycle power plant is chosen as the target area, taking into account seasonal factors such as temperature, humidity, wind speed, atmospheric stability, and wind direction. By utilizing a Gaussian diffusion model, the concentration of ammonia gas at various locations is estimated to assess the potential extent of external damage resulting from a leak. The study reveals that in conditions of high temperature and stable atmosphere within the specified range, lower wind speeds contribute to increased damage to the human body due to ammonia diffusion.

Analysis of Damage Impact Range according to the NG/NH3 Mixing Ratio when applying Ammonia as Fuel for a Combined Cycle Power Plant using an ALOHA Program (ALOHA 프로그램을 활용한 복합화력발전소 내 암모니아 연료 적용 시 NG/NH3 혼소율에 따른 피해영향범위 분석)

  • Yoo Jeong Choi;Hee Kyung Park;Min Chul Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.73-84
    • /
    • 2024
  • In this study, a quantitative risk impact assessment is performed using an ALOHA program to identify the risks when applying ammonia as fuel for combined cycle power plants as one of the solutions of climate change. The worst and the alternative accident scenarios are established for the Sejong combined cycle power plant and the effective ranges are calculated in terms of flammability, thermal radiation, overpressure and toxicity. The analysis results show that the toxic risk is the most critical and the effective distance is highly proportional to the mixing ratio of natural gas and ammonia by showing the Pearson's correlation coefficient over 98% as 0.991, 0.987 and 0.989 for the Level Of Concern(LOC)-1, LOC-2 and LOC-3, respectively. In addition, the coefficients of linearity for LOC-1, LOC-2 and LOC-3 are calculated to 133, 70 and 29, respectively so it can be confirmed that the effective distance increases as the criterion decreases.

Modeling and verification of generator/control system of Seo-Inchon combined-cycle plant by load rejection test (부하차단시험에 의한 서인천복합화력 발전기.제어계의 모델링 및 검증)

  • 최경선;문영환;김동준;추진부;류승헌;권태원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.501-510
    • /
    • 1996
  • The gas-turbine generator of Seo-Incheon combined-cycle plant was tested for derivation of a model for dynamic analysis. Load rejection and AVR step test was performed to get the dynamic response of generator. The parameters of generator/control system model were determined by these measured data. No-load saturation test was performed for the saturation characteristics of the generator under steady state. V-curve test was also performed so as to find exact generator parameters. Q-axis parameters of generator was derived by measuring power angle. AVR and governor constants have been tuned by their oscillatory period and setting time characteristics. The derived parameters of generator control system is verified by one-machine infinite bus system simulation. (author). 7 refs., 20 figs., 5 tabs.

  • PDF

Neural Network Tuning of the 2-DOF PID Controller With a Combined 2-DOF Parameter For a Gas Turbine Generating Plant

  • Kim, Dong-Hwa
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.95-103
    • /
    • 2001
  • The purpose of Introducing a combined cycle with gas turbine in power plants is to reduce losses of energy, by effectively using exhaust gases from the gas turbine to produce additional electricity or process. The efficiency of a combined power plant with the gas turbine increases, exceeding 50%, while the efficiency of traditional steam turbine plants is approximately 35% to 40%. Up to the present time, the PID controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain without any experience, since the gain of the PID controller has to be manually tuned by trial and error procedures. This paper focuses on the neural network tuning of the 2-DOF PID controller with a combined 2-DOF parameter (NN-Tuning 2-DOF PID controller), for optimal control of the Gun-san gas turbine generating plant in Seoul, Korea. In order to attain optimal control, transfer function and operating data from start-up, running, and stop procedures of the Gun-san gas turbine have been acquired and a designed controller has been applied to this system. The results of the NN-Tuning 2-DOF PID are compared with the PID controller and the conventional 2-DOF PID controller tuned by the Ziegler-Nichols method through experimentation. The experimental results of the NN-Tuning 2-DOF PID controller represent a more satisfactory response than those of the previously-mentioned two controllers.

  • PDF

Performance Analysis on Gas Turbine based Oxy-fuel Combustion Power Plants (가스터빈과 순산소 연소를 적용한 발전시스템의 성능해석)

  • Lee, Young-Duk;Lee, Sang-Min;Park, Jun-Hong;Yu, Sang-Seok;Ahn, Kook-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3169-3174
    • /
    • 2008
  • Future power plants will be required to adopt some type of carbon capture and storage (CCS) technologies to reduce their CO2 emissions. One of distinguished CCS techniques expected to resolve the green house effect is to apply the oxy-fuel combustion technique to power plant, and a lot of research/demonstration programs have been going on in the world. In this paper, CO2-capturing power plants based on gas turbine and oxy-fuel combustion are investigated over several types of configurations. As a prior step, simulation model for 500 MW-class combined cycle power plant was set and was used as a reference case. The efficiencies of several power plants was compared and the advantages and disadvanteges was investigated.

  • PDF

Exergetic design and analysis of a nuclear SMR reactor tetrageneration (combined water, heat, power, and chemicals) with designed PCM energy storage and a CO2 gas turbine inner cycle

  • Norouzi, Nima;Fani, Maryam;Talebi, Saeed
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.677-687
    • /
    • 2021
  • The tendency to renewables is one of the consequences of changing attitudes towards energy issues. As a result, solar energy, which is the leader among renewable energies based on availability and potential, plays a crucial role in full filing global needs. Significant problems with the solar thermal power plants (STPP) are the operation time, which is limited by daylight and is approximately half of the power plants with fossil fuels, and the capital cost. Exergy analysis survey of STPP hybrid with PCM storage carried out using Engineering Equation Solver (EES) program with genetic algorithm (GA) for three different scenarios, based on eight decision variables, which led us to decrease final product cost (electricity) in optimized scenario up to 30% compare to base case scenario from 28.99 $/kWh to 20.27 $/kWh for the case study. Also, in the optimal third scenario of this plant, the inner carbon dioxide gas cycle produces 1200 kW power with a thermal efficiency of 59% and also 1000 m3/h water with an exergy efficiency of 23.4% and 79.70 kg/h with an overall exergy efficiency of 34% is produced in the tetrageneration plant.

Economic Analysis of Plant Utilities Under Environment Factor (환경요소를 고려한 발전설비의 경제성 평가)

  • 정석재;김경섭;박진원
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.2
    • /
    • pp.35-43
    • /
    • 2004
  • The purpose of this study is an economic analysis of power plant utilities by comparing electricity generating cost including environmental costs. Considering the enormous role of electricity in the national economy, it is very important to study the effect of environmental regulation on the electricity sector. Because power utilities need for large investment during construction, operation and maintenance, and also require much construction lead time. Economic analysis is the important process in the electric system expansion planning. This paper compares the costs of electricity generation including environmental costs between a coal-fired power plant and an LNG combined cycle power plants. With the simulation, this study surveys the sensitivity of fuel prices, interest rate and carbon tax. In each case, this sensitivity can help to decide which utility is economically better in environmental regulation circumstance.

  • PDF

Analysis of Dynamic Behavior of Natural Circulation Heat Recovery Steam Generators

  • Kim, Sung-Ho;Lee, Chi-Hwan;Cho, Chang-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.134.3-134
    • /
    • 2001
  • The dynamic behavior of heat recovery steam generators for combined cycle power plant is simulated in cases of startup and shutdown conditions. To ensure performance and design data, dynamic model of the HRSG was developed and dynamic simulation was performed. The dynamic analysis will undoubtedly reduce costs which is associated with plant startup and contribute to a smooth commercial plant operation.

  • PDF