• Title/Summary/Keyword: Combined Cogeneration System

Search Result 35, Processing Time 0.024 seconds

Cost Accounting of Heat and Electricity of a Combined Cycle Cogeneration System (복합열병합 시스템에 대한 열과 전기의 원가산정)

  • Kim Deok-Jin;Lee Keun-Whi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.560-568
    • /
    • 2005
  • The cost accounting of electricity and heat produced from an energy system is important in evaluating the economical efficiency and deciding the reasonable sale price. The OECOPC method, suggested by the author, was applied to a 650 MW combined cycle cogeneration system having 4 operating modes, and each unit cost of electricity and heat products was calculated. In case that a fuel cost is ${\\}400/kg$ and there are no direct and indirect cost, they were calculated as follows; electricity cost of ${\\}23,700/GJ$ at gas-turbine mode, electricity cost of ${\\}15,890/GJ$ at combined cycle mode, electricity cost of ${\\}14,146/GJ$ and heat cost of ${\\}6,466/GJ$ at cogeneration mode, and electricity cost of ${\\}14,387/GJ$ and heat cost of ${\\}4,421/GJ$ at combined cycle cogeneration mode. Further, these unit costs are applied to account benefit on this system. Since the suggested OECOPC method can be applied to any energy system, it is expected to contribute to cost accounting of various energy systems.

A Daily Optimal Operation Scheduling of Total Cogeneration System Operating by Combined Heat Power Plant and District Heat Devices (복합화력발전설비와 지역난방설비가 연계된 종합열병합발전시스템의 일간 최적운전계획 수립)

  • Jung, Ji-Hoon;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.183-186
    • /
    • 2001
  • This paper describes the optimal operation scheduling of total cogeneration system which is interconnected with combined heat power plant of utility and district heat devices. The numerical modeling about the cogeneration system and the auxiliary thermal energy devices are established and simulation is carried out by LINDO program in order to minimize the operation cost under the national viewpoint. The results reveal that the established numerical modeling and the operation strategy can be effectively applied to the total cogeneration systems to reduce the energy cost.

  • PDF

The Operation Characteristics of Domestic Stirling Engine Cogeneration System (가정용 스털링엔진 열병합발전시스템 운전특성에 관한 연구)

  • Choi, Jae-Joon;Park, Byung-Sik;Jung, Dae-Heon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.309-314
    • /
    • 2009
  • The unpredicted worldwide oil price makes the energy efficiency technology be more importance than any other period. The small cogeneration system is one of the most representative technology among the energy efficiency technologies, and the Stirling engine cogeneration system has been concerned and investigated due to the preferable characteristics - low toxic emission, low noise and vibration level, and the various form of fuel. A tiny, 1kW of electrical output, gas fueled Stirling engine cogeneration system was investigated. The electrical efficiency and thermal efficiency of the system were measured. The experiment was executed at an independent Stirling engine mode, independent secondary burner mode, and the combined mode. Part load characteristics of the Stirling engine cogeneration system were investigated also. With the efficiency characteristics, the $O_2$ and NOx emission characteristics were measured.

  • PDF

Economic Investigation of Small Scale Cogeneration System in a School Dormitory of Busan Region (부산지역 학교 기숙사에서의 소형열병합발전 시스템의 경제성 분석)

  • Song, Jae-Do;Ku, Bon-Cheol;Kang, Yul-Ho;Park, Jong-Kyu;Lee, Jae-Keun;Ahn, Young-Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.9
    • /
    • pp.657-662
    • /
    • 2012
  • The cogeneration system can operate at efficiencies greater than those achieved when heat and power are produced in separate. The optimal system can be determined by selecting the auxiliary system combined with cogeneration system. In the present study, economic investigation has been conducted with the cogeneration electric heat pump(EHP) system and the cogeneration absorption chiller(AC) system to install in a school dormitory. To analyze life cycle cost(LCC), cost items such as initial investment costs, annual energy costs and maintenance costs of each system have been considered. The initial investment cost is referred to the basis of estimated costs, and annual energy costs such as the electric power and gas consumption are based on the data in a school dormitory. LCC is evaluated with the present worth method. Considering investigated results, the initial investment cost of the cogeneration EHP system is more profitable about 24% than that of the cogeneration AC system. The energy cost of the cogeneration EHP system is more profitable about 8% than the cogeneration AC system. The LCC shows that the cogeneration EHP system is the most effective system in the school dormitory.

Thermodynamic Performance Characterictics of a Tri-Cogeneration System Based on Kalina Cycle Driven by Renewable Energy (신재생에너지로 구동되는 칼리나 사이클 기반 삼중 병합 생산 시스템의 열역학적 성능 특성)

  • HAN, CHUL HO;KIM, KYOUNG HOON;JUNG, YOUNG GUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.649-655
    • /
    • 2021
  • The recently proposed Kalina based power and cooling cogeneration cycles (KPCCCs) have shown improvement in the energy utilization of the system compared to the basic Kalina cycle. This paper suggests a combined tri-cogeneration system for power, heating and cooling based on the Kalina cycle. And thermodynamic performances of the suggested system based on the first and second thermodynamic laws are parametrically investigated with respect to the ammonia mass fraction and the boiler pressure. Results showed that the thermodynamic performance of the system could be greatly improved compared to the former KPCCCs.

The thermodynamic efficiency characteristics of combined cogeneration system of 120MW (120MW급 열병합 복합발전시스템의 열역학적 효율 특성)

  • Choi, Myoungjin;Kim, Hongjoo;Kim, Byeongheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.29-36
    • /
    • 2017
  • In this study, acombined cogeneration power plant produced two types of thermal energy and electric or mechanical power in a single process. The performance of each component of the gas turbine-combined cogeneration system was expressed as a function of the fuel consumption of the entire system, and the heat and electricity performance of each component. The entire system consisted of two gas turbines in the upper system, and two heat recovery steam generators (HRSG), a steam turbine, and two district heat exchangers in the lower system. In the gas turbine combined cogeneration system, the performance test after 10,000 hours of operation time, which is subject to an ASME PTC 46 performance test, was carried out by the installation of various experimental facilities. The performance of the overall output and power plant efficiency was also analyzed. Based on the performance test data, the test results were compared to confirm the change in performance. This study performed thermodynamic system analysis of gas turbines, heat recovery steam generators, and steam turbines to obtain the theoretical results. A comparison was made between the theoretical and actual values of the total heat generation value of the entire system and the heat released to the atmosphere, as well as the theoretical and actual efficiencies of the electrical output and thermal output. The test results for the performance characteristics of the gas turbine combined cogeneration power plant were compared with the thermodynamic efficiency characteristics and an error of 0.3% was found.

Observation Studies on Field Operation of a Exhausted Heat Recovery System for a 300 kW Class Small Gas Engine Cogeneration System (300 kW급 소형 열병합발전기용 배열회수 시스템의 실증운전 성능분석에 관한 연구)

  • Kim, Min-Sung;Baik, Young-Jin;Park, Seong-Ryong;Ra, Ho-Sang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.4
    • /
    • pp.248-257
    • /
    • 2010
  • An exhausted heat recovery system for a small gas engine cogeneration plant was investigated. The system was designed and built in a 300 kW class cogeneration demonstrative system. The basic performance was tested depending on load variation, and installed to a field site as a bottoming heat and power supply system. The exhaust gas heat exchangers (EGHXs) in shell-and-tube type and shell-and-plate type were tested. The entire efficiency of the cogeneration system was estimated between 85 to 90% under the 100% load condition, of which trend appears higher in summer due to the less thermal loss than in winter. Power generation efficiency and thermal efficiency was measured in a range of 31~33% and 54~57%, respectively.

Development of a Thermal Design Software for the Heat Recovery Steam Generator of Combined Cogeneration Systems (열병합 복합발전시스템용 폐열회수 보일러 열설계 소프트웨어 개발 연구)

  • Kim, T.K.;Oh, S.D.;Kwon, Y.H.;Seo, S.H.;Kim, B.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.726-731
    • /
    • 2001
  • A thermal design software is developed for the heat recovery steam generator(HRSG) of combined cogeneration systems. The heat transfer is calculated by using the element method to account for the varying thermal properties across the heat transfer elements. The circulation balance is computed for the evaporator to accurately estimate the steam generation rate and to check the proper circulation of the boiler water through the tubes. The software developed can be used to simulate HRSG systems with various combinations of auxiliary burner, wall superheater, superheater, reheater, evaporator, and economizer. Systems with several different combinations of the system components are successfully tested. And it is concluded that the developed software can be used for the design of heat recovery steam generators with various combinations of heat transfer components.

  • PDF

Thermodynamic Performance Analysis of a Cogeneration System in Series Circuit Using Regenerative ORC (재생 유기랭킨사이클을 이용한 직렬 열병합 발전 시스템의 열역학적 성능 특성)

  • KIM, KYOUNG HOON;PARK, BAE DUCK;KIM, MAN-HOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.278-286
    • /
    • 2015
  • This paper presents the analytical results of the thermodynamic performance characteristics for a cogeneration system using regenerative organic Rankine cycle (ORC) driven by low-grade heat source. The combined heat and power cogeneration system consists of a regenerative superheated ORC and an additional process heater in a series circuit. Eight working fluids of R134a, R152a, propane, isobutane, butane, R245fa, R123, and isopentane are considered for the analysis. Special attention is paid to the effect of turbine inlet pressure on the system performance such as thermal input, net power and useful heat productions, electrical, thermal, and system efficiencies. The results show a significant effect of the turbine inlet pressure and selection of working fluid on the thermodynamic performance of the system.

Cost Accounting of Electricity and Heat on Combined Cycle Cogeneration (복합열병합 발전에 대한 전기 및 열 원가산정)

  • 김덕진;이근휘
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.7
    • /
    • pp.673-682
    • /
    • 2004
  • The cost accounting of products on energy system is important for evaluating the economical efficiency and deciding the reasonable sale price. In the present, the suggested OECOPC method was applied to a combined cycle cogeneration, and each unit cost of electricity and heat products was calculated. In addition, the previous thermoeconomic methods were applied and calculated to equal system. As a result of comparing various methods, the unit costs by OECOPC method were calculated in the middle value of those. This result tells that OECOPC methods are most moderate. The suggested OECOPC method can apply any energy system. Hence this method is expected to make contribution to cost accounting on energy System.