• Title/Summary/Keyword: Combinatorial method

Search Result 226, Processing Time 0.027 seconds

A Study about Additional Reinforcement in Local Updating and Global Updating for Efficient Path Search in Ant Colony System (Ant Colony System에서 효율적 경로 탐색을 위한 지역갱신과 전역갱신에서의 추가 강화에 관한 연구)

  • Lee, Seung-Gwan;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.237-242
    • /
    • 2003
  • Ant Colony System (ACS) Algorithm is new meta heuristic for hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem (TSP). In this paper, we introduce ACS of new method that adds reinforcement value for each edge that visit to Local/Global updating rule. and the performance results under various conditions are conducted, and the comparision between the original ACS and the proposed method is shown. It turns out that our proposed method can compete with tile original ACS in terms of solution quality and computation speed to these problem.

Optimization of the Travelling Salesman Problem Using a New Hybrid Genetic Algorithm

  • Zakir Hussain Ahmed;Furat Fahad Altukhaim;Abdul Khader Jilani Saudagar;Shakir Khan
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.12-22
    • /
    • 2024
  • The travelling salesman problem is very famous and very difficult combinatorial optimization problem that has several applications in operations research, computer science and industrial engineering. As the problem is difficult, finding its optimal solution is computationally very difficult. Thus, several researchers have developed heuristic/metaheuristic algorithms for finding heuristic solutions to the problem instances. In this present study, a new hybrid genetic algorithm (HGA) is suggested to find heuristic solution to the problem. In our HGA we used comprehensive sequential constructive crossover, adaptive mutation, 2-opt search and a new local search algorithm along with a replacement method, then executed our HGA on some standard TSPLIB problem instances, and finally, we compared our HGA with simple genetic algorithm and an existing state-of-the-art method. The experimental studies show the effectiveness of our proposed HGA for the problem.

MAXIMUM TOLERABLE ERROR BOUND IN DISTRIBUTED SIMULATED ANNEALING

  • Hong, Chul-Eui;McMillin, Bruce M.;Ahn, Hee-Il
    • ETRI Journal
    • /
    • v.15 no.3
    • /
    • pp.1-26
    • /
    • 1994
  • Simulated annealing is an attractive, but expensive, heuristic method for approximating the solution to combinatorial optimization problems. Attempts to parallel simulated annealing, particularly on distributed memory multicomputers, are hampered by the algorithm's requirement of a globally consistent system state. In a multicomputer, maintaining the global state S involves explicit message traffic and is a critical performance bottleneck. To mitigate this bottleneck, it becomes necessary to amortize the overhead of these state updates over as many parallel state changes as possible. By using this technique, errors in the actual cost C(S) of a particular state S will be introduced into the annealing process. This paper places analytically derived bounds on this error in order to assure convergence to the correct optimal result. The resulting parallel simulated annealing algorithm dynamically changes the frequency of global updates as a function of the annealing control parameter, i.e. temperature. Implementation results on an Intel iPSC/2 are reported.

  • PDF

Optimization of Satellite Structures by Simulated Annealing (시뮬레이티드 어닐링에 의한 인공위성 구조체 최적화)

  • Im Jongbin;Ji Sang-Hyun;Park Jungsun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.262-269
    • /
    • 2005
  • Optimization of a satellite structure under severe space launching environments is performed considering various design constraints. Simulate annealing, one of combinatorial optimization techniques, is used to optimize the satellite. The optimization results by the simulated annealing are compared to those by the method of modified feasible direction and genetic algorithm. Ten bar truss structure is optimized for feasibility study of the simulated annealing. Finally, the satellite structure is optimized by the simulated annealing algorithm under space environment. Weights of the satellite upper platform and propulsion module are minimized with consideration of several static and dynamic constraints. MSC/NASTRAN is used to find the static and dynamic responses. Simulated annealing has been programmed and integrated with the finite element analysis program for optimization. It is shown that the simulated annealing algorithm can be extended to the optimization of space structures.

WIS: Weighted Interesting Sequential Pattern Mining with a Similar Level of Support and/or Weight

  • Yun, Un-Il
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.336-352
    • /
    • 2007
  • Sequential pattern mining has become an essential task with broad applications. Most sequential pattern mining algorithms use a minimum support threshold to prune the combinatorial search space. This strategy provides basic pruning; however, it cannot mine correlated sequential patterns with similar support and/or weight levels. If the minimum support is low, many spurious patterns having items with different support levels are found; if the minimum support is high, meaningful sequential patterns with low support levels may be missed. We present a new algorithm, weighted interesting sequential (WIS) pattern mining based on a pattern growth method in which new measures, sequential s-confidence and w-confidence, are suggested. Using these measures, weighted interesting sequential patterns with similar levels of support and/or weight are mined. The WIS algorithm gives a balance between the measures of support and weight, and considers correlation between items within sequential patterns. A performance analysis shows that WIS is efficient and scalable in weighted sequential pattern mining.

  • PDF

Tabu Search for Job Shop Scheduling (Job Shop 일정계획을 위한 Tabu Search)

  • Kim, Yeo-Keun;Bae, Sang-Yun;Lee, Deog-Seong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.3
    • /
    • pp.409-428
    • /
    • 1995
  • Job shop scheduling with m different machines and n different jobs is a NP-hard problem of combinatorial optimization. The purpose of the paper is to develop the heuristic method using tabu search for job shop scheduling to minimize makespan or mean flowtime. To apply tabu search to job shop scheduling problem, in this paper we propose the several move methods that employ insert moves in order to generate the neighbor solutions, and present the efficient rescheduling procedure that yields active schedule for a changed operation sequence by a move of operations. We also discuss the tabu search techniques of diversifying the search of solution space as well as the simple tabu search. By experiments, we find the appropriate tabu list size and tabu attributes, and analyze the proposed tabu search techniques with respect to the quality of solutions and the efforts of computation. The experimental results show that the proposed tabu search techniques using long-term memory function have the ability to search a good solution, and are more efficient in the mean flowtime minimization problem than in the makespan minimization.

  • PDF

Optimum Allocation of Reactive Power in Real-Time Operation under Deregulated Electricity Market

  • Rajabzadeh, Mahdi;Golkar, Masoud A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.337-345
    • /
    • 2009
  • Deregulation in power industry has made the reactive power ancillary service management a critical task to power system operators from both technical and economic perspectives. Reactive power management in power systems is a complex combinatorial optimization problem involving nonlinear functions with multiple local minima and nonlinear constraints. This paper proposes a practical market-based reactive power ancillary service management scheme to tackle the challenge. In this paper a new model for voltage security and reactive power management is presented. The proposed model minimizes reactive support cost as an economic aspect and insures the voltage security as a technical constraint. For modeling validation study, two optimization algorithm, a genetic algorithm (GA) and particle swarm optimization (PSO) method are used to solve the problem of optimum allocation of reactive power in power systems under open market environment and the results are compared. As a case study, the IEEE-30 bus power system is used. Results show that the algorithm is well competent for optimal allocation of reactive power under practical constraints and price based conditions.

Genetic Algorithm Based Decentralized Task Assignment for Multiple Unmanned Aerial Vehicles in Dynamic Environments

  • Choi, Hyun-Jin;Kim, You-Dan;Kim, Hyoun-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.163-174
    • /
    • 2011
  • Task assignments of multiple unmanned aerial vehicles (UAVs) are examined. The phrase "task assignment" comprises the decision making procedures of a UAV group. In this study, an on-line decentralized task assignment algorithm is proposed for an autonomous UAV group. The proposed method is divided into two stages: an order optimization stage and a communications and negotiation stage. A genetic algorithm and negotiation strategy based on one-to-one communication is adopted for each stage. Through the proposed algorithm, decentralized task assignments can be applied to dynamic environments in which sensing range and communication are limited. The performance of the proposed algorithm is verified by performing numerical simulations.

A Combinatorial Optimization for Influential Factor Analysis: a Case Study of Political Preference in Korea

  • Yun, Sung Bum;Yoon, Sanghyun;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.415-422
    • /
    • 2017
  • Finding influential factors from given clustering result is a typical data science problem. Genetic Algorithm based method is proposed to derive influential factors and its performance is compared with two conventional methods, Classification and Regression Tree (CART) and Chi-Squared Automatic Interaction Detection (CHAID), by using Dunn's index measure. To extract the influential factors of preference towards political parties in South Korea, the vote result of $18^{th}$ presidential election and 'Demographic', 'Health and Welfare', 'Economic' and 'Business' related data were used. Based on the analysis, reverse engineering was implemented. Implementation of reverse engineering based approach for influential factor analysis can provide new set of influential variables which can present new insight towards the data mining field.

A New Tree Representation for Evolutionary Algorithms (진화 알고리듬을 위한 새로운 트리 표현 방법)

  • Soak, Sang-Moon;Ahn, Byung-Ha
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.1
    • /
    • pp.10-19
    • /
    • 2005
  • The minimum spanning tree (MST) problem is one of the traditional optimization problems. Unlike the MST, the degree constrained minimum spanning tree (DCMST) of a graph cannot, in general, be found using a polynomial time algorithm. So, finding the DCMST of a graph is a well-known NP-hard problem of importance in communications network design, road network design and other network-related problems. So, it seems to be natural to use evolutionary algorithms for solving DCMST. Especially, when applying an evolutionary algorithm to spanning tree problems, a representation and search operators should be considered simultaneously. This paper introduces a new tree representation scheme and a genetic operator for solving combinatorial tree problem using evolutionary algorithms. We performed empirical comparisons with other tree representations on several test instances and could confirm that the proposed method is superior to other tree representations. Even it is superior to edge set representation which is known as the best algorithm.