• Title/Summary/Keyword: Combinatorial

Search Result 693, Processing Time 0.034 seconds

SA-selection-based Genetic Algorithm for the Design of Fuzzy Controller

  • Han Chang-Wook;Park Jung-Il
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.236-243
    • /
    • 2005
  • This paper presents a new stochastic approach for solving combinatorial optimization problems by using a new selection method, i.e. SA-selection, in genetic algorithm (GA). This approach combines GA with simulated annealing (SA) to improve the performance of GA. GA and SA have complementary strengths and weaknesses. While GA explores the search space by means of population of search points, it suffers from poor convergence properties. SA, by contrast, has good convergence properties, but it cannot explore the search space by means of population. However, SA does employ a completely local selection strategy where the current candidate and the new modification are evaluated and compared. To verify the effectiveness of the proposed method, the optimization of a fuzzy controller for balancing an inverted pendulum on a cart is considered.

Antibody Engineering

  • Hong, Hyo-Jeong;Kim, Sun-Taek
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.3
    • /
    • pp.150-154
    • /
    • 2002
  • Monoclonal antibodies (Mabs) have been used as diagnostic and analytical reagents since hybridoma technology was invented in 1975. In recent years, antibodies have become increasingly accepted as therapeutics for human diseases, particularly for cancer, viral infection and autoimmune disorders. An indication of the emerging significance of antibody-based therapeutics is that over a third of the proteins currently undergoing clinical trials in the United States are antibodies. Until the late 1980's, antibody technology relied primarily on animal immunization and the expression of engineered antibodies. However, the development of methods for the expression of antibody fragments in bacteria and powerful techniques for screening combinatorial libraries, together with the accumulating structure-function data base of antibodies, have opened unlimited opportunities for the engineering of antibodies with tailor-made properties for specific applications. Antibodies of low immunogenicity, suitable for human therapy and in vivo diagnosis, can now be developed with relative ease. Here, antibody structure-function and antibody engineering technologies are described.

Inferring Transcriptional Interactions and Regulator Activities from Experimental Data

  • Wang, Rui-Sheng;Zhang, Xiang-Sun;Chen, Luonan
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.307-315
    • /
    • 2007
  • Gene regulation is a fundamental process in biological systems, where transcription factors (TFs) play crucial roles. Inferring transcriptional interactions between TFs and their target genes has utmost importance for understanding the complex regulatory mechanisms in cellular systems. On one hand, with the rapid progress of various high-throughput experiment techniques, more and more biological data become available, which makes it possible to quantitatively study gene regulation in a systematic manner. On the other hand, transcription regulation is a complex biological process mediated by many events such as post-translational modifications, degradation, and competitive binding of multiple TFs. In this review, with a particular emphasis on computational methods, we report the recent advances of the research topics related to transcriptional regulatory networks, including how to infer transcriptional interactions, reveal combinatorial regulation mechanisms, and reconstruct TF activity profiles.

COMBINATORIAL PROOF FOR THE POSITIVITY OF THE ORBIT POLYNOMIAL $O^{n,3}_d(q)$

  • Lee, Jae-Jin
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.455-462
    • /
    • 2012
  • The cyclic group $Cn={\langle}(12{\cdots}n){\rangle}$ acts on the set ($^{[n]}_k$) of all $k$-subsets of [$n$]. In this action of $C_n$ the number of orbits of size $d$, for $d|n$, is $$O^{n,k}_d=\frac{1}{d}\sum_{\frac{n}{d}|s|n}{\mu}(\frac{ds}{n})(^{n/s}_{k/s})$$. Stanton and White[7] generalized the above identity to construct the orbit polynomials $$O^{n,k}_d(q)=\frac{1}{[d]_{q^{n/d}}}\sum_{\frac{n}{d}|s|n}{\mu}(\frac{ds}{n})[^{n/s}_{k/s}]{_q}^s$$ and conjectured that $O^{n,k}_d(q)$ have non-negative coefficients. In this paper we give a combinatorial proof for the positivity of coefficients of the orbit polynomial $O^{n,3}_d(q)$.