• 제목/요약/키워드: Combination reactor

검색결과 147건 처리시간 0.023초

개선된 플라즈마 공정을 이용한 Ralstonia Solanacearum 불활성화에 관한 연구 (A Study on the Ralstonia Solanacearum Inactivation using Improved Plasma Process)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제23권3호
    • /
    • pp.369-378
    • /
    • 2014
  • Effect of improvement of the dielectric barrier discharge (DBD) plasma system on the inactivation performance of bacteria were investigated. The improvement of plasma reactor was performed by combination with the basic plasma reactor and UV process or combination with the basic plasma reactor and circulation system which was equipped with gas-liquid mixer. Experimental results showed that tailing effect was appeared after the exponential decrease in basic plasma reactor. There was no enhancement effect on the Ralstonia Solanacearum inactivation with combination of basic plasma process and UV process. The application of gas-liquid mixing device on the basic plasma reactor reduced inactivation time and led to complete sterilization. The effect existence of gas-liquid mixing device, voltage, air flow rate (1 ~ 5 L/min), water circulation rate (2.8 ~ 9.4 L/min) in gas-liquid mixing plasma, plasma voltage and UV power of gas-liquid mixing plasma+UV process were evaluated. The optimum air flow rate, water circulation rate, voltage of gas-liquid mixing system were 3 L/min, 3.5 L/min and 60 V, respectively. There was no enhancement effect on the Ralstonia Solanacearum inactivation with combination of gas-liquid mixing plasma and UV process.

침전조 상등액과 유입하수의 유량대비에 따른 하수 내 질소 화합물 제거특성 (Removal Characteristic of Nitrogenous Compounds According to the Combination of Feeding Ratio between the Supernatant of Precipitation Tank and Raw Domestic Wastewater)

  • 박상민;박진희
    • 유기물자원화
    • /
    • 제13권4호
    • /
    • pp.128-135
    • /
    • 2005
  • 본 연구에서는 CFSTR(Continuous-flow Stirred-Tank Reactor) 형식의 반응조에 담체가 채워진 호기-혐기조합 공법에 따른 질산화 및 탈질화에 관한 효율의 증대와 유입수 및 침전조 상등액의 유량대비를 조절 하므로써 질소제거의 효율 증대에 관한 방법을 모색하고자 하였다. 탈질조 내의 탈질효율에 비례하여 포기 반응조 내의 질산성 질소 농도를 산출하고자 유입수와 침전조 내에서의 상등액을 탈질조로 반송하여 유입하고 유입수와 반송되는 침전조 상등액 유입의 유량대비를 통하여 최종적으로 반응조에 대한 질소제거의 효율을 파악하고자 하였다. 적절한 유량대비를 이용하였을 때 탈질조 내의 필요한 탄소원의 공급이 유입수로 통해 이루어지는 것으로 판단되어지며, 외부탄소원의 주입 없이 유입수 만으로도 완벽하게 탈질이 이루어지는 것을 확인 할 수 있었다. 하지만 유입수와 침전조 상등액의 유량대비에서 침전조 상등액의 유량비가 커지면 커질수록 유입수내의 탄소원의 유입이 줄어들기 때문에 이에 대한 탄소원의 농도에 대한 산정이 중요하다고 생각된다.

  • PDF

수처리용 다중 유전체 방벽 방전 플라즈마 반응기 개발 (Development of Multi Dielectric Barrier Discharge Plasma Reactor for Water Treatment)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제22권7호
    • /
    • pp.863-871
    • /
    • 2013
  • Dielectric discharges are an emerging technique in environmental pollutant degradation, which that are characterized by the production of hydroxyl radicals as the primary degradation species. For practical application of the plasma reactor, reactor that can handle large amounts of water are needed. Plasma research to date has focused on small-scale water treatment. This study was carried out basic study for scale-up of a single DBD (dielectric barrier discharge) plasma reactor. The degradation of N, N-Dimethyl-4-nitrosoaniline (RNO, indicator of the generation of OH radical) was used as a performance indicator of multi-plasma reactor. The experiments is divided into two parts: design parameters [effect of distance of single plasma module (1~14 cm), arrangement of ground electrode (single and multi), rector number (1~5) and power number (1~5)]; operation parameter [effect of applied voltage (60~220 V), air flow rate (1~5 L/min), electric conductivity of solution ($1.4{\mu}S/cm$, deionized water)~18.8 mS/cm (addition of NaCl 10 g/L) and pH (5~9)]. Considering the electric stability of the plasma reactor, optimum spacing between the single plasma module was 2 cm. Multi discharge electrodes - single ground electrode array was selected. Combination of power 3-plasma module 5 was the optimal combination for maximum RNO degradation. The optimum 1st voltage and air flow rate for RNO degradation were 180 V and 4 L/min, respectively. The pH and conductivity of the solution was not influencing the RNO degradation.

Protein Analysis Using a Combination of an Online Monolithic Trypsin Immobilized Enzyme Reactor and Collisionally-Activated Dissociation/Electron Transfer Dissociation Dual Tandem Mass Spectrometry

  • Hwang, Hyo-Jin;Cho, Kun;Kim, Jin-Young;Kim, Young-Hwan;Oh, Han-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3233-3240
    • /
    • 2012
  • We demonstrated the combined applications of online protein digestion using trypsin immobilized enzyme reactor (IMER) and dual tandem mass spectrometry with collisionally activated dissociation (CAD) and electron transfer dissociation (ETD) for tryptic peptides eluted through the trypsin-IMER. For the trypsin-IMER, the organic and inorganic hybrid monolithic material was used. By employing the trypsin-IMER, the long digestion time could be saved with little or no sacrifice of the digestion efficiency, which was demonstrated for standard protein samples. For three model proteins (cytochrome c, carbonic anhydrase, and bovine serum albumin), the tryptic peptides digested by the IMER were analyzed using LC-MS/MS with the dual application of CAD and ETD. As previously shown by others, the dual application of CAD and ETD increased the sequence coverage in comparison with CAD application only. In particular, ETD was very useful for the analysis of highly-protontated peptide cations, e.g., ${\geq}3+$. The combination approach provided the advantages of both trypsin-IMER and CAD/ETD dual tandem mass spectrometry applications, which are rapid digestion (i.e., 10 min), good digestion efficiency, online coupling of trypsin-IMER and liquid chromatography, and high sequence coverage.

저온 플라즈마·촉매 복합공정을 이용한 트리클로로에틸렌의 분해에 관한 연구 (Decomposition of Trichloroethylene by Using a Non-Thermal Plasma Process Combined with Catalyst)

  • 목영선;남창모
    • 한국산업융합학회 논문집
    • /
    • 제6권4호
    • /
    • pp.269-275
    • /
    • 2003
  • A non-thermal plasma process combined with $Cr_2O_3/TiO_2$ catalyst was applied to the decomposition of trichloroethylene (TCE). A dielectric barrier discharge reactor operated with AC high voltage was used as the non-thermal plasma reactor. The effects of reaction temperature and input power on the decomposition of TCE and the formation of byproducts including HCl, $Cl_2$, CO, NO, $NO_2$ and $O_3$ were examined. At an identical input power, the increase in the reaction temperature from 373 K to 473 K decreased the decomposition of TCE in the plasma reactor. The presence of the catalyst downstream the plasma reactor not only enhanced the decomposition of TCE but also affected the distribution of byproducts, significantly. However, synergistic effect as a result of the combination of non-thermal plasma with catalyst was not observed, i.e., the TCE decomposition efficiency in this plasma-catalyst combination system was almost similar to the sum of those obtained with each process.

  • PDF

DESIGN AND VALIDATION OF ROBUST AND AUTONOMOUS CONTROL FOR NUCLEAR REACTORS

  • SHAFFER ROMAN A.;EDWARDS ROBERT M.;LEE KWANG Y.
    • Nuclear Engineering and Technology
    • /
    • 제37권2호
    • /
    • pp.139-150
    • /
    • 2005
  • A robust control design procedure for a nuclear reactor has been developed and experimentally validated on the Penn State TRIGA research reactor. The utilization of the robust controller as a component of an autonomous control system is also demonstrated. Two methods of specifying a low order (fourth-order) nominal-plant model for a robust control design were evaluated: 1) by approximation based on the 'physics' of the process and 2) by an optimal Hankel approximation of a higher order plant model. The uncertainty between the nominal plant models and the higher order plant model is supplied as a specification to the ,u-synthesis robust control design procedure. Two methods of quantifying uncertainty were evaluated: 1) a combination of additive and multiplicative uncertainty and 2) multiplicative uncertainty alone. The conclusions are that the optimal Hankel approximation and a combination of additive and multiplicative uncertainty are the best approach to design robust control for this application. The results from nonlinear simulation testing and the physical experiments are consistent and thus help to confirm the correctness of the robust control design procedures and conclusions.

원자로 운전을 위한 압력/온도 한계곡선의 설정 (Generation of Pressure/Temperature Limit Curve for Reactor Operation)

  • 정명조;박윤원
    • 전산구조공학
    • /
    • 제10권4호
    • /
    • pp.155-164
    • /
    • 1997
  • 핵분열로 인한 고온, 고압의 냉각수를 유지하는 원자로 용기는 원자로의 냉각 또는 가열시 압력에 의한 응력과 함께 열응력이 가해지고 원자로 벽의 온도변화에 따라 파괴인성치가 변화하기 때문에 임의의 결함이 존재할 경우 건전성 확보가 쉽지 않다. 따라서 가상결함이 성장하지 않도록 압력과 온도를 조정하면서 냉각 및 가열시킬 필요가 있다. 본 연구에서는 원자로 운전 중 냉각 및 가열시 안전하게 운전하기 위한 압력/온도 한계곡선을 구하는 절차에 필요한 이론을 조사하였고 이의 도출을 위한 해석과정을 전산화하였다. 국내원전 중 가장 오래된 고리 1호기에 대한 압력/온도 한계곡선을 다양한 냉각 및 가열률에 따라 설정하였고 이들 결과를 검토하였다.

  • PDF

Ca(OH)2촉매를 이용한 플라즈마 반응에 의한 황산화물의 제거에 관한 연구 (A study of decomposition of sulfur oxides using Calcium hydroxide catalyst by plasma reactions)

  • 김다영;우인성;이선희;김도현;김병철
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2013년 추계학술대회
    • /
    • pp.547-560
    • /
    • 2013
  • In this study, the air pollutant removal such as sulfur oxides was studied. A combination of the plasma discharge in the reactor by the reaction surface discharge reactor Calcium hydroxides catalytic reactor and air pollutants, hazardous gas SOx, changes in gas concentration, change in frequency, the thickness of the electrode, kinds of electrodes and the addition of simulated composite catalyst composed of a variety of gases, including decomposition experiments were performed by varying the process parameters. The experimental results showed the removal efficiency of 98% in the decomposition of sulfur oxides removal experiment when Calcium hydroxides catalysts and the tungsten(W) electrodes were used. It was increased 3% more than if you do not have the catalytic. If added to methane gas was added the removal efficiency increased decomposition.

  • PDF

ADVANCED TEST REACTOR TESTING EXPERIENCE - PAST, PRESENT AND FUTURE

  • Marshall Frances M.
    • Nuclear Engineering and Technology
    • /
    • 제38권5호
    • /
    • pp.411-416
    • /
    • 2006
  • The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world's premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The physical configuration of the ATR, a 4-leaf clover shape, allows the reactor to be operated at different power levels in the comer 'lobes' to allow for different testing conditions for multiple simultaneous experiments. The combination of high flux (maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second and maximum fast [E>1.0 MeV] neutron fluxes of 5E14 neutrons per square centimeter per second) and large test volumes (up to 122 cm long and 12.7 cm diameter) provide unique testing opportunities. The current experiments in the ATR are for a variety of test sponsors - US government, foreign governments, private researchers, and commercial companies needing neutron irradiation services. There are three basic types of test configurations in the ATR. The simplest configuration is the sealed static capsule, which places the capsule in direct contact with the primary coolant. The next level of experiment complexity is an instrumented lead experiment, which allows for active control of experiment conditions during the irradiation. The most complex experiment is the pressurized water loop, in which the test sample can be subjected to the exact environment of a pressurized water reactor. For future research, some ATR modifications and enhancements are currently planned. This paper provides more details on some of the ATR capabilities, key design features, experiments, and future plans.

Neutronics analysis of a 200 kWe space nuclear reactor with an integrated honeycomb core design

  • Chao Chen;Huaping Mei;Meisheng He;Taosheng Li
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4743-4750
    • /
    • 2022
  • Heat pipe cooled nuclear reactor has been a very attractive technical solution to provide the power for deep space applications. In this paper, a 200 kWe space nuclear reactor power design has been proposed based on the combination of an integrated UN ceramic fuel, a heat pipe cooling system and the Stirling power generators. Neutronics and thermal analysis have been performed on the space nuclear reactor. It was found that the entire reactor core has at least 3.9 $ subcritical even under the worst-case submersion accident superimposed a single safety drum failure, and results from fuel temperature coefficient, neutron spectrum and power distribution analysis also showed that this reactor design satisfies the neutronics requirements. Thermal analysis showed that the power in the core can be successfully removed both in normal operation or under one or more heat pipes failure scenarios.