• Title/Summary/Keyword: Combination ratio

Search Result 1,610, Processing Time 0.024 seconds

Effect of Alloying Elements on the Wear Resistance of Austempered Ductile Iron (오스템퍼링 처리한 구상흑연주철(ADI)의 내마모성에 미치는 합금원소의 영향에 관한 연구)

  • Lee, Sang-Hak;Kim, Hong-Beom;Kim, Jong-Chul;Chun, Byung-Wook;Kim, Chang-Gyu;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.19 no.1
    • /
    • pp.24-32
    • /
    • 1999
  • A series of investigations for Austempered Ductile Iron (ADI) castings were carried out by using the specimens with various chemical compositions and heat treatment conditions. The rolling wear characteristics of alloyed austempered ductile irons under an unlubricated dry rolling condition was evaluated by the Amsler type test with 9.09% sliding ratio. Generally, the wear amount was increased with the austempering temperature and decreased when the hardness of the matrix was higher. The alloying elements also influenced the austempering reaction, the microstructure and the mechanical properties. In this study, the mechanical properties (i.e.) ultimate tensile strength (UTS), hardness, elongation) and the wear resistance are analysed to show the relationship between the alloying elements and the austempering temperatures. Mo, Cu and Ni are alloyed individually or in combination. It has been found that when Cu and Ni alloyed individually to a casting, the wear amount is increased than others with elements alloyed in combination. The amount of rolling wear loss was decreased when Mo was alloyed in cast iron, individually or in combination.

  • PDF

Foliar Application of Magnesium Sulphate and Basal Application of Calcium Carbonate: A New Dimension in Production of Tasar Crops

  • Sinha, Uma S.P.;Das, Susmita;Sinha, Manoj K.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.25 no.1
    • /
    • pp.123-127
    • /
    • 2012
  • An experiment was carried out to boost the production of tasar crops through application of secondary nutrients. Different combinations of secondary nutrients were prepared and its effect was studied on the yield and quality of leaves of tasar food plant Terminalia tomentosa W & A with 2.4 m ${\times}$ 2.4 m spacing and cocoon characters of tasar silkworm Antheraea mylitta Drury reared on them. Among different combinations of secondary nutrients, foliar application of magnesium sulphate (2%, w/v) and basal application of 3 quintal/ha of calcium carbonate (secondary nutrient combination SM5) was found to be the best in crop improvement. It improves the quantity and quality of leaves as well as the commercial characters of cocoons. As a result, silk production improves. Under this combination, leaf yield increased by 26.55% in comparison to control. Average increase in moisture, total mineral, crude protein and total carbohydrate was 3.26%, 20.84%, 15.39% and 17.85% respectively as compared with control. Further, bio assay studies revealed that average larval weight, E.R.R., cocoon weight, shell weight and silk ratio percent increased by 11.25%, 25.71%, 20.05%, 35.14% and 12.17% respectively over control which indicates that secondary nutrient combination $SM_5$ has significant role in improving the production of tasar crops.

Hydrofoil optimization of underwater glider using Free-Form Deformation and surrogate-based optimization

  • Wang, Xinjing;Song, Baowei;Wang, Peng;Sun, Chunya
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.6
    • /
    • pp.730-740
    • /
    • 2018
  • Hydrofoil is the direct component to generate thrust for underwater glider. It is significant to improve propulsion efficiency of hydrofoil. This study optimizes the shape of a hydrofoil using Free-Form Deformation (FFD) parametric approach and Surrogate-based Optimization (SBO) algorithm. FFD approach performs a volume outside the hydrofoil and the position changes of control points in the volume parameterize hydrofoil's geometric shape. SBO with adaptive parallel sampling method is regarded as a promising approach for CFD-based optimization. Combination of existing sampling methods is being widely used recently. This paper chooses several well-known methods for combination. Investigations are implemented to figure out how many and which methods should be included and the best combination strategy is provided. As the hydrofoil can be stretched from airfoil, the optimizations are carried out on a 2D airfoil and a 3D hydrofoil, respectively. The lift-drag ratios are compared among optimized and original hydrofoils. Results show that both lift-drag-ratios of optimized hydrofoils improve more than 90%. Besides, this paper preliminarily explores the optimization of hydrofoil with root-tip-ratio. Results show that optimizing 3D hydrofoil directly achieves slightly better results than 2D airfoil.

Study on the Development of Traditional Fast Food -Beandaeduk- (전통식에 입각한 한국적인 fase food의 개발정착에 관한 연구)

  • Koo, Sung-Ja;Lee, Young-Soon;Chang, Jung-Ok
    • Journal of the Korean Society of Food Culture
    • /
    • v.4 no.1
    • /
    • pp.95-102
    • /
    • 1989
  • The objective of this study was to access the effects of sensory and physical properties of Beandaeduk on 7 different combination methods (three were combined with mung bean and different proportions of water; four were combined with mung bean and various cereals with constant water), and 3 storage periods (0, 1 and 3 weeks at $-18^{\circ}C$). This experiment was consisted of sensory evaluation I (appearance, texture, taste, flavor and overall preference), II (color, moisture, volume, hardness, elasticity, viscosity and ratio materials, off-flavor and oder) and physical analysis of each sample, and questionaire survey of Beandaeduk. In sensory evaluation I except flavor, significant differences (p<0.05) were found among different combination methods of sample. Also significant differences (p<0.05) were found in sample for storage periods, except appearance. In sensory evaluation II, only moisture and oder of samples were significantly different (p<0.05) for storage periods, and there were significant differences (p<0.05) in samples among different combination methods, except elasicity. Stepwise regression for storage periods in sensory I showed that texture and taste were important factors in overall preference of sample. In the questionaire survey, preference and adding materials of Beandaeduk were different according to province. Half of respondents preferred to get instant Beandaeduk and instant mung bean powder.

  • PDF

Effect of Biphenyl Dimethyl Dicarboxylate on the Humoral Immunosuppression by Ketoconazole in Mice

  • Kim, Joung-Hoon;Lim, Jong-Pil;Kang, Tae-Wook
    • Archives of Pharmacal Research
    • /
    • v.22 no.2
    • /
    • pp.124-129
    • /
    • 1999
  • The present study was undertaken to investigate the effect of biphenyl dimethyl idcarboxylate (PMC) on the humoral immunosuppression by ketoconazole (KCZ) in ICR mice. PMC at a dose of 6 mg/kg was administered orally to mice daily for 14 consecutive days. KCZ was suspended in RPMI 1640 medium and orally administered at 160 mg/kg/day 2 hrs after the administration of PMC. Mice were immunized an challenged with challenged red blood cells (SRBC). The results of the present study are summarized as follows; a gain of body weight and relative weights of spleen and liver were significantly increased by combination of PMC and KCZ, as compared with those in mice treated with KCZ alone. Splenic plaque forming cells (PFC) and hemagglutination (HA) titers to SRBC were greatly enhanced by the combination of PMC and KCZ, compared with treatment of KCZ alone. The elevation of serum glutamicpyruvic transminase (S-GPT) and total protein levels caused by KCZ were reduced to normal level by the combination of PMC and KCZ. In addition, lower serum albumin and A/G ratio were also increased to normal level. These findings indicate that PMC has a protective effect against KCZ-induced humoral immunosuppression.

  • PDF

Synergistic Antifungal Activity of Magnoliae Cortex and Syzyii Flos against Candida albicans

  • YOON, Jeemin;KIM, Tae-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.142-153
    • /
    • 2021
  • Candida albicans is a dermal fungus of the human body that is known to cause oral candidiasis, vaginal candidiasis, and bloodstream infections in immunocompromised people or in certain environmental conditions. As cases of strains resistant to antifungal agents in C. albicans have been reported, studies using plant materials as safe antifungal agents are being actively conducted. In this study, a total of 17 edible plant extracts showed antifungal activity against C. albicans as a result of evaluating a 280-plant extract library using paper disk diffusion method. Among them, the four extracts with the strongest antifungal activity (Cinnamomi Cortex, Cinnamomi Ramulus, Magnoliae Cortex, and Syzygii Flos) were selected and evaluated for synergistic antifungal activity against C. albicans. The combination of Magnoliae Cortex and Syzygii Flos showed a synergistic activity. The antifungal activity was evaluated based on the concentrations of magnolol and eugenol, the respective components of Magnoliae Cortex and Syzygii Flos. Magnolol and eugenol showed synergistic antifungal activities at the concentration ratio of 1:25 - 1:61. The antifungal activity of these two compounds contributes 28 to 48% to the synergistic antifungal activity of the combination of Magnoliae Cortex and Syzygii Flos extract. In this study, we propose that a combination of Magnoliae Cortex and Syzygii Flos can effectively inhibit the growth of C. albicans and that magnolol and eugenol are the responsible inhibitory compounds.

A new optimized performance-based methodology for seismic collapse capacity assessment of moment resisting frames

  • Maddah, Mohammad M.;Eshghi, Sassan;Garakaninezhad, Alireza
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.667-678
    • /
    • 2022
  • Moment-resisting frames (MRFs) are among the most conventional steel structures for mid-rise buildings in many earthquake-prone cities. Here, a simplified performance-based methodology is proposed for the seismic collapse capacity assessment of these buildings. This method employs a novel multi-mode pushover analysis to determine the engineering demand parameters (EDPs) of the regular steel MRFs up to the collapse prevention (CP) performance level. The modal combination coefficients used in the proposed pushover analysis, are obtained from two metaheuristic optimization algorithms and a fitting procedure. The design variables for the optimization process are the inter-story drift ratio profiles resulting from the multi-mode pushover analyses, and the objective values are the outcomes of the incremental dynamic analysis (IDA). Here, the collapse capacity of the structures is assessed in three to five steps, using a modified IDA procedure. A series of regular mid-rise steel MRFs are selected and analyzed to calculate the modal combination coefficients and to validate the proposed approach. The new methodology is verified against the current existing approaches. This comparison shows that the suggested method more accurately evaluates the EDPs and the collapse capacity of the regular MRFs in a robust and easy to implement way.

Effects of Dimension, Density and Arrangement of the Unit Cell of the TPMS on Contact and Flow Areas of Combined TPMS Structures (TPMS 단위체의 크기, 밀도 및 배치가 혼합형 TPMS 구조의 접촉 및 유동 면적에 미치는 영향)

  • K. K. Lee;H. Kim;D. G. Ahn
    • Transactions of Materials Processing
    • /
    • v.33 no.4
    • /
    • pp.248-254
    • /
    • 2024
  • The triply periodic minimal surface (TPMS) structure is characterized by a high surface-to-volume (S/V) ratio and the separated internal structure for flow. Combining the different TPMS structures can provide unique flow and strength characteristics. This paper investigates the effects of dimension, density and arrangement of the unit cell of the TPMS on contact and flow areas of combined TPMS structures. Several representative TPMS structures, including primitive, gyroid and diamond structures, are adopted to design gradient and heterogeneous types TPMS structures. The estimation method of contact and flow areas using an image processing technique is proposed. Python software is used to predict contact and flow area. The influence of the combination method of TPMS on contact and flow areas in the contact surface of combined TPMS structures with different shapes is investigated. Based on the results of the investigation, an appropriate combination method of TPMS structures is discussed.

Preliminary design and structural responses of typical hybrid wind tower made of ultra high performance cementitious composites

  • Wu, Xiangguo;Yang, Jing;Mpalla, Issa B.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.791-807
    • /
    • 2013
  • Ultra High Performance Cementitious Composites with compressive strength 200MPa (UHPCC-200) is proposed for the structural design of super high hybrid wind turbine tower to gain durability, ductility and high strength design objectives. The minimal wall thickness is analyzed using basic bending and compression theory and is modified by a toque influence coefficient. Two cases of wall thickness combination of middle and bottom segment including varied ratio and constant ratio are considered within typical wall thickness dimension. Using nonlinear finite element analysis, the effects of wall thickness combinations with varied and constant ratio and prestress on the structural stress and lateral displacement are calculated and analyzed. The design limitation of the segmental wall thickness combinations is recommended.

Design Optimization of Dimple Shape to Enhance Turbulent Heat Transfer (난류열전달 증진을 위한 딤플형상의 최적설계)

  • Choi Ji-Yong;Kim Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.700-706
    • /
    • 2006
  • This study presents a numerical procedure to optimize the shape of dimple surface to enhance turbulent heat transfer in a rectangular channel. The response surface based optimization method is used as an optimization technique with Reynolds-averaged Wavier-Stokes analysis of fluid flow and heat transfer with shear stress transport (SST) turbulence model. The dimple depth-to-dimple print diameter ratio, channel height-to-dimple print diameter ratio, and dimple print diameter-to-pitch ratio are chosen as design variables. The objective function is defined as a linear combination of heat transfer related term and friction loss related term with a weighting factor. full factorial method is used to determine the training points as a mean of design of experiment. The optimum shape shows remarkable performance in comparison with a reference shape.