DOI QR코드

DOI QR Code

Effects of Dimension, Density and Arrangement of the Unit Cell of the TPMS on Contact and Flow Areas of Combined TPMS Structures

TPMS 단위체의 크기, 밀도 및 배치가 혼합형 TPMS 구조의 접촉 및 유동 면적에 미치는 영향

  • K. K. Lee ;
  • H. Kim ;
  • D. G. Ahn (Department of Mechanical Engineering, Chosun University)
  • 이광규 (조선대학교 기계공학과) ;
  • 김현 (조선대학교 기계공학과) ;
  • 안동규 (조선대학교 기계공학과)
  • Received : 2024.07.14
  • Accepted : 2024.07.19
  • Published : 2024.08.01

Abstract

The triply periodic minimal surface (TPMS) structure is characterized by a high surface-to-volume (S/V) ratio and the separated internal structure for flow. Combining the different TPMS structures can provide unique flow and strength characteristics. This paper investigates the effects of dimension, density and arrangement of the unit cell of the TPMS on contact and flow areas of combined TPMS structures. Several representative TPMS structures, including primitive, gyroid and diamond structures, are adopted to design gradient and heterogeneous types TPMS structures. The estimation method of contact and flow areas using an image processing technique is proposed. Python software is used to predict contact and flow area. The influence of the combination method of TPMS on contact and flow areas in the contact surface of combined TPMS structures with different shapes is investigated. Based on the results of the investigation, an appropriate combination method of TPMS structures is discussed.

Keywords

Acknowledgement

이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. RS-2023-00219369)

References

  1. W. Jiang, W. Liao, T. Liu, X. Shi, C. Wang, J. Qi, Y. Chen, Z. Wang, C. Zhang, 2021, A Voxel-based Method of Multiscale Mechanical Property Optimization for the Design of Graded TPMS Structures, Mater. Des., Vol. 204, 109655. https://doi.org/10.1016/j.matdes.2021.109655
  2. L. Han, S. Che, 2018, An Overview of Materials with Triply Periodic Minimal Surfaces and Related Geometry: From Biological Structures to Self-Assembled Systems, Adv. Mater., Vol. 30, No. 17, 1705708. https://doi.org/10.1002/adma.201705708
  3. A. M. Abou-Ali, O. Al-Ketan, D. W. Lee, R. Rowshan, R. K. A. Al-Rub, 2020, Mechanical Behavior of Polymeric Selective Laser Sintered Ligament and Sheet Based Lattices of Triply Periodic Minimal Surface Architectures, Mater. Des., Vol. 196, 109100. https://doi.org/10.1016/j.matdes.2020.109100
  4. S. H. Oh, C. J. An, B. M. Seo, J. W. Kim, C. Y. Park, K. Park, 2023, Functional Morphology Change of TPMS Structures for Design and Additive Manufacturing of Compact Heat Exchangers, Addit. Manuf., Vol. 76, 103778. https://doi.org/10.1016/j.addma.2023.103778
  5. M. Alteneiji, M. I. H. Ali, K. A. Khan, R. K. A. Al-Rub, 2022, Heat Transfer Effectiveness Characteristics Maps for Additively Manufactured TPMS Compact Heat Exchangers, Energy Storage and Saving, Vol. 1, No. 3, pp. 153-161. https://doi.org/10.1016/j.enss.2022.04.005
  6. J. H. You, K. Park, 2021, Design and Additive Manufacturing of Thermal Metamaterial with High Thermal Resistance and Cooling Capability, Addit. Manuf., Vol. 41, 101947. https://doi.org/10.1016/j.addma.2021.101947
  7. J. H. Kim, D. J. Yoo, 2020, A Design and Fabrication Method of New Compact Heat Exchangers Using Triply Periodic Minimal Surface, J. Korean Soc. Precis. Eng., Vol. 37, No. 7, pp. 509-518. http://doi.org/10.7736/JKSPE.020.025
  8. N. Novak, D. Kytyr, V. Rada, T. Doktor, O. Al-Ketan, R. Rowshan, M. Vesenjak, Z. Ren, 2022, Compression Behaviour of TPMS-filled Stainless Steel Tubes, Mater. Sci. Eng. A, Vol. 852, 143680. https://doi.org/10.1016/j.msea.2022.143680
  9. Y. Cao, S. Lai, W. Wu, L. Sang, Y. Lin, T. Liu, C. Liang, W. Liu, Y. Zhao, 2023, Design and Mechanical Evaluation of Additively-manufactured Graded TPMS Lattices with Biodegradable Polymer Composites, J. Mater. Res. Technol-JMRT, Vol. 23, pp. 2868-2880. https://doi.org/10.1016/j.jmrt.2023.01.221
  10. N. Yang, Y. Tian, D. Zhang, 2015, Novel Real Function Based Method to Construct Heterogeneous Porous Scaffolds and Additive Manufacturing for Use in Medical Engineering, Med. Eng. Phys., Vol. 37, No. 11, pp. 1037-1046. https://doi.org/10.1016/j.medengphy.2015.08.006
  11. N. Yang, Z. Quan, D. Zhang, Y. Tian, 2014, Multimorphology Transition Hybridization CAD Design of Minimal Surface Porous Structures for Use in Tissue Engineering, Comput.-Aided Des., Vol. 56, pp. 11-21. https://doi.org/10.1016/j.cad.2014.06.006
  12. M. Ouda, O. Al-Ketan, N. Sreedhar, M. I. H. Ali, R. K. A. Al-Rub, S. K. Hong, H. A. Arafat, 2020, Novel Static Mixers Based on Triply Periodic Minimal Surface (TPMS) Architectures, J. Environ. Chem. Eng., Vol. 8, No. 5, 104289. https://doi.org/10.1016/j.jece.2020.104289
  13. S. AlMahri, R. Santiago, D. W. Lee, H. Ramos, H. Alabdouli, M. Alteneiji, Z. Guan, W. Chatwell, M. Alves, 2021, Evaluation of the Dynamic Response of Triply Periodic Minimal Surfaces Subjected to High Strain-Rate Compression, Addit. Manuf., Vol. 46, 102220. https://doi.org/10.1016/j.addma.2021.102220
  14. Y. Cao, S. Lai, W. Wu, L. Sang, Y. Lin, T. Liu, C. Liang, W. Liu, Y. Zhao, 2021, Design and Mechanical Evaluation of Additively-manufactured Graded TPMS Lattices with Biodegradable Polymer Composites, J. Mater. Res. Technol-JMRT, Vol. 23, pp. 2868-2880. https://doi.org/10.1016/j.jmrt.2023.01.221