• Title/Summary/Keyword: Combination Rule

Search Result 239, Processing Time 0.028 seconds

An Improved Dempster-Shafer Algorithm Using a Partial Conflict Measurement

  • Odgerel, Bayanmunkh;Lee, Chang-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.308-317
    • /
    • 2016
  • Multiple evidences based decision making is an important functionality for computers and robots. To combine multiple evidences, mathematical theory of evidence has been developed, and it involves the most vital part called Dempster's rule of combination. The rule is used for combining multiple evidences. However, the combined result gives a counterintuitive conclusion when highly conflicting evidences exist. In particular, when we obtain two different sources of evidence for a single hypothesis, only one of the sources may contain evidence. In this paper, we introduce a modified combination rule based on the partial conflict measurement by using an absolute difference between two evidences' basic probability numbers. The basic probability number is described in details in Section 2 "Mathematical Theory of Evidence". As a result, the proposed combination rule outperforms Dempster's rule of combination. More precisely, the modified combination rule provides a reasonable conclusion when combining highly conflicting evidences and shows similar results with Dempster's rule of combination in the case of the both sources of evidence are not conflicting. In addition, when obtained evidences contain multiple hypotheses, our proposed combination rule shows more logically acceptable results in compared with the results of Dempster's rule.

Copyright Royalty Regulation and Competition in the Music Retail Market

  • YANG, YONG HYEON
    • KDI Journal of Economic Policy
    • /
    • v.39 no.1
    • /
    • pp.83-102
    • /
    • 2017
  • Price control can restore efficiency in some cases, but an uncarefully designed policy fails to restore efficiency, yields side effects, or even exacerbates efficiency losses. This paper shows that the copyright royalty rule, which takes the greater of ad valorem royalties and perunit royalties, tends to fix the prices of final goods at a specific level. Such a rule weakens competition as it prevents prices from decreasing even when market conditions change, having negative effects on social welfare as well as consumer surplus. Counterfactual analyses using estimation results in the Korean online music service industry show that firms could have profitably reduced prices if the ad valorem rule had been applied instead, although they did not have an incentive to do so under the original combination rule.

CCQC modal combination rule using load-dependent Ritz vectors

  • Xiangxiu Li;Huating Chen
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • Response spectrum method is still an effective approach for the design of buildings with supplemental dampers. In practice, complex complete quadratic combination (CCQC) rule is always used in the response spectrum method to consider the effect of non-classical damping. The conventional CCQC rule is based on exact complex mode vectors. Sometimes the calculated complex mode vectors may be not excited by the external loading and errors in the structural responses always arise due to the mode truncation. Load-dependent Ritz (LDR) vectors are associated with the external loading and LDR vectors not excited can be automatically excluded. Also, contributions of higher modes are implicitly contained in the LDR vectors in terms of static responses. To improve the calculation efficiency and accuracy, LDR vectors are introduced in the CCQC rule in the present study. Firstly, the generation procedure of LDR vectors suitable for non-classical damping system is presented. Compared to the conventional LDR vectors, the LDR vectors herein are complex-valued and named as complex LDR (CLDR) vectors. Based on the CLDR vectors, the CCQC rule is then rederived and an improved response spectrum method is developed. Finally, the effectiveness of the proposed method in this paper is verified through three typical non-classical damping buildings. Numerical results show that the CLDR vector is superior to the complex mode with the same number in the calculation. Since the generation of CLDR vectors requires less computational cost and storage space, the method proposed in this paper offers an attractive alternative, especially for structures with a large number of degrees of freedom.

Combining Multiple Neural Networks by Dempster's Rule of Combination for ARMA Model Identification (Dempster's Rule of Combination을 이용한 인공신경망간의 결합에 의한 ARMA 모형화)

  • Oh, Sang-Bong
    • Journal of Information Technology Application
    • /
    • v.1 no.3_4
    • /
    • pp.69-90
    • /
    • 1999
  • 본 논문은 시계열자료의 ARMA 모형화를 위해 계층적(Hierarchical) 문제해결 방식인 인공신경망 기초 의상결정트리분류기상의 인공신경망 구조를 개선하여 지역문제(Local Problem)를 해결하는 복수개의 인공신경망 결과를 Dempster's rule of combination을 이용하여 종합하는 병행적인 (Parallel) ARMA 모형활르 위한 방법론을 제시함으로써 의사결정트리분류기에 근거한 방법론의 단점을 보완하였다. 본 논문에서 제시한 ARMA 모형화를 위한 방법론은 세 단계로 구성되어 있다: 1) ESACF 특성 벡터 추출단계; 2) 개별 인공신경망에 의한 부분적 모델링 단계; 3) Conflict Resolution 단계, 제시한 방법론을 검증하기 위해 모의실험용 자료와 실제 시계열자료를 이용하여 제시된 방법론을 검증하였으며 실험결과 기존 연구에 비해 ARMA 모형화와 정확도가 높은 것으로 나타났다.

  • PDF

Knowledge Based Simulation for Production Scheduling (생산일정계획을 위한 지식 기반 모의실험)

  • La, Tae-Young;Kim, Sheung-Kown;Kim, Sun-Uk
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.1
    • /
    • pp.197-213
    • /
    • 1997
  • It is not easy to find a good production schedule which can be used in practice. Therefore, production scheduling simulation with a simple dispatching rule or a set of dispatching rules is used. However, a simple dispatching rule may not create a robust schedule, for the same rule is blindly applied to all internal production processes. The presumption is that there might be a specific combination of appropriate rules that can improve the efficiency of a total production system for a certain type of orders. In order to acquire a better set of dispatching rules, simulation is used to examine the performance of various combinations of dispatching rule sets. There are innumerable combination of rule sets. Hence it takes too much computer simulation time to find a robust set of dispatching rule for a specific production system. Therefore, we propose a concept of the knowledge based simulation to circumvent the problem. The knowledge based simulation consists of knowledge bases, an inference engine and a simulator. The knowledge base is made of rule sets that is extracted from both simulation and human intuition obtained by the simulation studies. For a certain type of orders, the proposed system provides several sets of dispatching rules that are expected to generate better results. Then the scheduler tries to find the best by simulating all proposed set of rules with the simulator. The knowledge-based simulator armed with the acquired knowledge has produced improved solutions in terms of time and scheduling performance.

  • PDF

A TRIPLE MIXED QUADRATURE BASED ADAPTIVE SCHEME FOR ANALYTIC FUNCTIONS

  • Mohanty, Sanjit Kumar
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.935-947
    • /
    • 2021
  • An efficient adaptive scheme based on a triple mixed quadrature rule of precision nine for approximate evaluation of line integral of analytic functions has been constructed. At first, a mixed quadrature rule SM1(f) has been formed using Gauss-Legendre three point transformed rule and five point Booles transformed rule. A suitable linear combination of the resulting rule and Clenshaw-Curtis seven point rule gives a new mixed quadrature rule SM10(f). This mixed rule is termed as triple mixed quadrature rule. An adaptive quadrature scheme is designed. Some test integrals having analytic function integrands have been evaluated using the triple mixed rule and its constituent rules in non-adaptive mode. The same set of test integrals have been evaluated using those rules as base rules in the adaptive scheme. The triple mixed rule based adaptive scheme is found to be the most effective.

Combined effect of the horizontal components of earthquakes for moment resisting steel frames

  • Reyes-Salazar, Alfredo;Juarez-Duarte, Jose A.;Lopez-Barraza, Arturo;Velazquez-Dimas, Juan I.
    • Steel and Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.189-209
    • /
    • 2004
  • The commonly used seismic design procedures to evaluate the maximum effect of both horizontal components of earthquakes, namely, the Square Root of the Sum of the Squares (SRSS) and the 30-percent (30%) combination rules, are re-evaluated. The maximum seismic responses of four three-dimensional moment resisting steel frames, in terms of the total base shear and the axial loads at interior, lateral and corner columns, are estimated as realistically as possible by simultaneously applying both horizontal components. Then, the abovementioned combination rules and others are evaluated. The numerical study indicates that both, the SRSS rule and the 30% combination method, may underestimate the combined effect. It is observed that the underestimation is more for the SRSS than for the 30% rule. In addition, the underestimation is more for inelastic analysis than for elastic analysis. The underestimation cannot be correlated with the height of the frames or the predominant period of the earthquakes. A basic probabilistic study is performed in order to estimate the accuracy of the 30% rule in the evaluation of the combined effect. Based on the results obtained in this study, it is concluded that the design requirements for the combined effect of the horizontal components, as outlined in some code-specified seismic design procedures, need to be modified. New combination ways are suggested.

A novel evidence theory model and combination rule for reliability estimation of structures

  • Tao, Y.R.;Wang, Q.;Cao, L.;Duan, S.Y.;Huang, Z.H.H.;Cheng, G.Q.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.507-517
    • /
    • 2017
  • Due to the discontinuous nature of uncertainty quantification in conventional evidence theory(ET), the computational cost of reliability analysis based on ET model is very high. A novel ET model based on fuzzy distribution and the corresponding combination rule to synthesize the judgments of experts are put forward in this paper. The intersection and union of membership functions are defined as belief and plausible membership function respectively, and the Murfhy's average combination rule is adopted to combine the basic probability assignment for focal elements. Then the combined membership functions are transformed to the equivalent probability density function by a normalizing factor. Finally, a reliability analysis procedure for structures with the mixture of epistemic and aleatory uncertainties is presented, in which the equivalent normalization method is adopted to solve the upper and lower bound of reliability. The effectiveness of the procedure is demonstrated by a numerical example and an engineering example. The results also show that the reliability interval calculated by the suggested method is almost identical to that solved by conventional method. Moreover, the results indicate that the computational cost of the suggested procedure is much less than that of conventional method. The suggested ET model provides a new way to flexibly represent epistemic uncertainty, and provides an efficiency method to estimate the reliability of structures with the mixture of epistemic and aleatory uncertainties.