• Title/Summary/Keyword: Combat system

Search Result 614, Processing Time 0.024 seconds

A Study on the Analysis of NCW(Network Centric Warfare) Combat Effectiveness Using Cellular Automata Simulation (세포 자동차(Cellular Automata) 시뮬레이션을 이용한 네트워크 중심전 전투효과도 평가 연구)

  • Jeong, Seong-Jin;Jo, Seong-Jin;Hong, Seong-Pil
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.10a
    • /
    • pp.3-9
    • /
    • 2005
  • The recent notion of Network Centric Warfare (NCW) emphasizes the ability to distribute right information at the right time to maximize the combat effectiveness. Accordingly, in the modern combat system the importance of non-physical element, such as communication system is increasing. However, an NCW-support communication network system is expensive. Therefore, it is essential to develop a proper combat system evaluation method to establish an efficient NCW-support combat system. Traditionally, combat system effectiveness is measured in terms of physical elements such as men and fire power. Obviously, such method is hardly applicable to a modern combat system To overcome this difficulty, we propose an evaluation model based on CA (Cellular Automata) simulation. A set of preliminary combat simulations show that CA simulation may be promising in evaluating non-physical element of a modem combat system.

  • PDF

A Study on the Analysis of NCW (Network Centric Warfare) Combat Effectiveness Using Cellular Automata Simulation (세포 자동차 시뮬레이션을 이용한 네트워크 중심전 전투효과도 평가 연구)

  • Chung Sung-jin;Cho Sung-jin;Hong Sung-Pil
    • Korean Management Science Review
    • /
    • v.22 no.2
    • /
    • pp.135-145
    • /
    • 2005
  • The recent notion of Network Centric Warfare (NCW) emphasizes the ability to distribute the right information at the right time to maximize the combat effectiveness. Accordingly, in the modern combat system, the importance of non-physical elements, such as a communication system, is increasing. However, an NCW-support communication network system is expensive. Therefore, it is essential to develop a proper combat system evaluation method to establish an efficient NCW-support combat system. Traditionally, combat system effectiveness is measured in terms of physical elements such as men and fire power, Obviously, such method is hardly applicable to a modern combat system. To overcome this difficulty, we propose an evaluation model based on CA (Cellular Automata) simulation. A set of preliminary combat simulations show that CA simulation may be promising in evaluating non-physical element of a modern combat system.

A Study on Security Requirements of Shipboard Combat System based on Threat Modelling (위협 모델링 기반 함정 전투체계 보안 요구사항에 관한 연구)

  • Seong-cheol Yun;Tae-shik Shon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.281-301
    • /
    • 2023
  • The shipboard combat system is a key system for naval combat that supports a command and control process cycle consisting of Detect - Control - Engage in real time to ensure ship viability and conduct combat missions. Modern combat systems were developed on the basis of Open Architecture(OA) to maximize acceptance of latest technology and interoperability between systems, and actively introduced the COTS(Commercial-of-the-shelf). However, as a result of that, vulnerabilities inherent in COTS SW and HW also occurred in the combat system. The importance of combat system cybersecurity is being emphasized but cybersecurity research reflecting the characteristics of the combat system is still lacking in Korea. Therefore, in this paper, we systematically identify combat system threats by applying Data Flow Diagram, Microsoft STRIDE threat modelling methodology. The threats were analyzed using the Attack Tree & Misuse case. Finally we derived the applicable security requirements which can be used at stages of planning and designing combat system and verified security requirements through NIST 800-53 security control items.

A Study on the Acquisition process improvement of Warship Combat System (Focus on Combat System Integration) (함정 전투체계 획득 프로세스 개선 연구 (전투체계 통합 중심으로))

  • Hwang, KwangYong;Choi, BongWan;Kim, HoJung
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.29-38
    • /
    • 2016
  • The threats around Korea Peninsula have been dramatically increased because North Korea is developing the Nuclear ballistic missile, Submarine launched ballistic missile(SLBM), and many kinds of weapons for sudden provocations. Therefore, ROK navy needs the cutting-edge warship combat systems in order to defeat the enemy threats effectively in the sea. The paper analyzes current warship combat system acquisition process and studies US navy and other advanced countries acquisition process and their contraction trends. After that, the paper proposes the optimal acquisition process of warship combat system for the ROK navy based on our current situation and other advanced countries acquisition trends. The paper will dedicate the next generation warship combat system acquisition process.

A Study on Development direction of Next-generation Naval Combat System Architecture (차세대 함정 전투체계 아키텍처 구축방안에 관한 연구)

  • Hwang, Kwangyong;Ok, Kyoungchan;Kim, Youngjin;Choi, Bongwan;Oh, Hyunseung;Choi, KwanSeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.105-118
    • /
    • 2016
  • A naval combat system is the system of systems who supports naval indigenous operations by integrating and inter-operating many different kind of weapons, which has characteristics of large scale complex computing system. ROK Navy has been built a blue ocean navy, so that large scale warships are under constructions. However, warship combat system architecture has not been well studied so far in Korea. The paper focuses on current combat system architecture and propose the next generation combat system architecture, which will give the development direction of ROK Navy. In order to complete combat system architecture studies, the system engineering process shall be applied to the study. Moreover, ARENA simulation tool is used for verification of combat system architecture. The system engineering process is as follows: next-generation naval combat system requirement analysis, functional architecture analysis and physical architecture analysis.

An Agent based Modeling and Simulation for Survivability Analysis of Combat System (전투 시스템 생존성 분석을 위한 에이전트 기반 모델링 및 시뮬레이션)

  • Hwang, Hun-Gyu;Kim, Hun-Ki;Lee, Jang-Se
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2581-2588
    • /
    • 2012
  • Survivability of combat system is changed by various facts in dynamic battle field. Existing survivability analysis programs for a combat system analyze statically survivability for combat system in spite of dynamic battle environment. To overcome this limitation, we propose an agent-based modeling and simulation method for dynamic survivability analysis of the combat system. To do this, we have adopted DEVS formalism, SES/MB framework and agent technology for modeling components of the combat system and crews. The proposed method has advantages of being able to analyze not only a static survivability of the combat system but also a dynamic survivability of combat system by applying responses of crews in battle field.

A Study on the Design of System Access Control Software For the Improvement of the Stability and Survivability of Naval Combat Management System

  • Jong-Hyeon Im
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.137-145
    • /
    • 2023
  • In this paper, we propose system access control software that improves the survivability of the naval combat system while maintaining security and stability. The software was improved by improving the operating environment configuration and user authentication process of the system access control software that constitutes the naval combat system, defining the operating environment classification of the naval combat system, and applying a software parallel execution process considering the load rate. Through this, the waiting time required to configure the environment is shortened, providing rapid operation to the operator, and improving the fact that the naval combat system cannot be operated unless the environment configuration is completed even in emergency situations. In order to test the performance, a test environment was created by simulating the existing naval combat system, and the execution time for each operation category was measured and compared. Compared to the existing naval combat system, the execution time of the basic combat system was reduced by about 69.3%, the execution time of the combat system was reduced by about 54.9%, and the execution time of the integrated combat system was confirmed to be reduced by about 8.4%.

Development of data analysis tool for combat system integration

  • Shin, Seung-Chun;Shin, Jong-Gye;Oh, Dae-Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.147-160
    • /
    • 2013
  • System integration is an important element for the construction of naval combat ships. In particular, because impeccable combat system integration together with the sensors and weapons can ensure the combat capability and survivability of the ship, the integrated performance of the combat system should be verified and validated whether or not it fulfills the requirements of the end user. In order to conduct systematic verification and validation, a data analysis tool is requisite. This paper suggests the Data Extraction, Recording and Analysis Tool (DERAT) for the data analysis of the integrated performance of the combat system, including the functional definition, architecture and effectiveness of the DERAT by presenting the test results.

Design of the Scalable Naval Combat System Software using Abstraction and Design Pattern

  • Kwon, Ki-Tae;Kim, Ki-Pyo;Choi, HwanJun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.7
    • /
    • pp.101-108
    • /
    • 2019
  • In this paper, we propose a new scalable and reliable combat system software in battleship which was developed procedurally in the past. Recently, combat system software is required to change frequently due to addition of new equipment and change of function. To solve those problems, this paper propose how to change combat system software into scalable software using class structure change and design pattern. Simulation results show that our scheme provides better performances and reliability than conventional scheme. Therefore proposed scheme can be efficiently used in Naval combat system.

A Study on the Design and Verification-Validation of the Supportive Equipment for Shipyard Test of Naval Combat System (함정 전투체계 함상시험을 위한 지원장비 설계 및 검증 연구)

  • Jung, Youngran;Kim, Cheolho;Han, Woonggie;Kim, Jaeick;Kim, Hyunsil
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.318-326
    • /
    • 2014
  • The Shipyard Test of Naval Combat System depends on external factors, such as weather conditions and availability of its sensor-weapon, due to the need of on-board sensor-weapon during the test. This paper suggests the Supportive Equipment using virtual simulator for Shipward Test, in case of the unavailability of the on-board sensor-weapon or the test support force(aircraft, surface ship etc.), to pre-check the functions of the combat system as well as to prepare the Shipyard Test. To mock the real sensor-weapon functions as similar as possible, the Supportive Equipment for Shipyard Test was verified by the Verification and Validation process, which is usually performed while developing models in the Modeling & Simulation field.