• Title/Summary/Keyword: Columnar Structure

Search Result 279, Processing Time 0.024 seconds

Nano-columnar Structure GaN를 이용한 GaN Wafer Bowing 감소 효과

  • Sin, In-Su;Lee, Dong-Hyeon;Yu, Hyo-Sang;Yu, Deok-Jae;Nanishi, Yasushi;Yun, Ui-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.411-412
    • /
    • 2012
  • 대부분의 상용 LED는 사파이어기판에 성장된 GaN를 기반으로 사용한다. GaN는 $1,000^{\circ}C$ 이상의 높은 온도에서 성장이 이루어지는데 이 경우 GaN과 사파이어 기판과의 높은 열팽창 계수로 인하여 compressive stress를 받게 된다. 이 compressive stress로 인하여 성장된 GaN wafer에 bowing이 일어나게 되고 이는 기판의 대면적화에 커다란 문제로 작용한다. 이런 문제들을 해결하기 위해 여러 방법이 고안되고 있지만 [1,2], 근본적으로 wafer bowing 문제의 해결은 이루어지고 있지 않다. 한편, 일반적으로 박막을 성장할 때 columnar structure를 가지는 박막이 coalescence되면 박막에 tensile stress가 걸린다는 사실이 알려져 있으며 [3], GaN를 저온에서 성장할 경우 columnar structure를 갖는다는 사실이 보고되었다 [4]. 본 연구에서는 이런columnar structure를 갖는 GaN을 이용하여 wafer bowing 문제가 해결된 GaN 박막 성장을 연구하였다. 본 실험에서는, c-plane 사파이어에 유기금속화학증착법(MOCVD)을 이용하여 nano-columnar structure를 갖는 저온 GaN layer을 성장하였다. 그 후 columnar structure를 유지하면서 $1,040^{\circ}C$까지 annealing한 후 고온에서 flat 한 GaN 박막을 nano-columnar structure GaN layer위에 성장 하였다. 우선 저온 GaN layer가 nano-columnar structure를 갖고, 고온에서도 nano-columnar structure가 유지되는 것을 scanning electron microscopy (SEM)과 transmission electron microcopy (TEM)을 통해 확인하였다. 또한 이런 columnar structure 위에 고온에서 성장시킨 flat한 GaN 박막이 성장된 것을 관찰할 수 있었다. 성장된 GaN박막의 wafer bowing 정도를 측정한 결과, columnar structure를 갖고 있는 고온 GaN 박막이 일반적인 GaN에 비해 확연하게 wafer bowing이 감소된 것을 확인할 수 있었다. Columnar structure가 coalescence가 되면서 생기는 tensile stress가 GaN박막의 성장시 발생하는 compressive stress를 compensation하여 wafer bowing이 줄어든 것으로 보인다. 본 발표에서는 이 구조에 대한 구조 및 stress 효과에 대해서 논의할 예정이다.

  • PDF

Effect of Surface Roughness on Nitriding of Aluminum by Electron Cyclotron Resonance Plasma (ECR 플라즈마에 의한 알루미늄 질화처리시 표면조도의 영향)

  • 김진수;안재현;고경현;오수기
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.4
    • /
    • pp.215-221
    • /
    • 1991
  • Microstructure evolution during low temperature vapor deposition exhibits wel-developed columnar structure mainly owing to geometrical shadowing effect of surface roughness. It is concluded that this structure is concided with many theoretical models suggested so far. In case of aluminum nitride film deposition consisted of etching and nitriding step employing ECR plasma, the rougher the surface before etching, the finer and more cone-and-whisker structure can be developed. In turn, this fine structure affects the formation and growth of columnar as well as offers many sites available for mechanical lock-up. Conclusively, the formation of well-defined columnar structures depends on the initial surface roughness.

  • PDF

The optical properties of columnar structure according to the growth angles of ZnO thin fims (성장각도에 따른 주상구조 ZnO 박막의 광학적 특성)

  • Ko, Ki-Han;Seo, Jae-Keun;Kim, Jae-Kwang;Kang, Eun-Kyu;Park, Mun-Gi;Ju, Jin-Young;Shin, Yong-Deok;Choi, Won-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.127-127
    • /
    • 2009
  • The most important part of the fabrication solar cells is the anti-reflection coating when excludes the kinds of silicon substrates (crystalline, polycrystalline, or amorphous), patterns and materials of electrodes. Anti-reflection coatings reduce the reflection of sunlight and at last increase the intensity of radiation to inside of solar cells. So, we can obtain increase of solar cell efficiency about 10% using anti-reflection coating. There are many kinds of anti-reflection film for solar cell, such as SiN, $SiO_2$, a-Si, and so on. And, they have two functions, anti-reflection and passivation. However such materials could not perfectly prevent reflection. So, in this work, we investigated the anti-reflection coating with the columnar structure ZnO thin film. We synthesized columnar structure ZnO film on glass substrates. The ZnO films were synthesized using a RF magnetron sputtering system with a pure (99.95%) ZnO target at room temperature. The anti-reflection coating layer was sputtered by argon and oxygen gases. The angle of target and substrate measures 0, 20, 40, 60 degrees, the working pressure 10 mtorr and the 250 W of RF power during 40 minutes. The confirm the growth mechanism of ZnO on columnar structure, the anti-reflection coating layer was observed by field emission scanning electron microscopy (FE-SEM). The optical trends were observed by UV-vis and Elleso meter.

  • PDF

Thin Film Growth and Evaluation Method for Conventional Co-Cr Based Perpendicular Magnetic Recording Media: Problems and New Solutions

  • Saito, Shin;Hoshi, Fumikazu;Hasegawa, Daiji;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.115-125
    • /
    • 2002
  • We proposed a novel method to evaluate the magnetic properties of the initial layer and the columnar structure separately for CoCr-based perpendicular recording media. We show that the thickness of the initial layer and the intrinsic magnetocrystalline anisotropy of columnar structure can be quantitatively evaluated using the plotted product of perpendicular anisotropy to magnetic film thickness versus magnetic film thickness ($K_{u{\bot}}^{ex{p.}}$ $\times$ d$_{mag.}$ vs. d$_{mag.}$ plot). Based on the analyses, it is found that: (1) compared with CoCrPtTa media, CoCrPtB media have relatively thin initial layer, and have fine grains with homogeneous columnar structure with c-plane crystallographic orientation; (2) CoCrPtB media can be grown epitaxially on Ru or CoCr/C intermediate layer, and as the result, the magnetic properties of the media within thin thickness region of d$_{mag.}$ $\leq$ 20 nm is significantly improved; (3) the key issue of material investigation for CoCr-based perpendicular recording media will be focused on how to fabricate c-plane-oriented columnar grains well isolated with nonmagnetic substance in epitaxial-growth media, while maintaining the thermal stability of the media.

A study on the vacuum brazing of carbon steels to a stainless steel (탄소강과 스테인리스강의 진공브레이징에 관한 연구)

  • 이창동;나석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1083-1091
    • /
    • 1988
  • Vacuum brazing is the most modern brazing process and is at present, far from being completely understood. By brazing under high vacuum, in an atmosphere free of oxidizing gases, a superior product with greater strength, ductility and uniformity can be obtained. In this study, the influence of brazing parameters such as base metal characteristics, joint clearance and brazing time were described in relation to the metallurgical phenomena and shear strength of vacuum-brazed joints between carbon steels and 304 stainless steel (SUS 304) brazed by copper filler metal. In copper brazing of SUS 304 to a medium carbon steel(M.C.S) the columnar Fe-Cr-Ni-Cu-C alloy structure was formed and grew from the M.C.S side and at the same time, the surface of M.C.S. was decarbonized. The driving force for the formation and growth of columnar structure was the difference of carbon content between base metals. As the joint clearance is narrower and brazing time is longer, the formation and growth of columnar phase and decarburization of carbon steels were more noticeable. Because of decarburization of carbon steels, the shear strength of brazed joints were reduced as the formation of columnar structure was increased.

Columnar Structural Growth in Molten Filler Metal during Brazing of Dissimilar Materials (이종재의 브레이징 계면에서 주상 조직의 성장 기구)

  • 김정석
    • Journal of Powder Materials
    • /
    • v.4 no.4
    • /
    • pp.252-257
    • /
    • 1997
  • Cu-brazed layer between the sintered-cam(Fe-5Cr-lMo-0.5P-2.5C, wt%) and seamless steelpipe(0.25-0.35C, 0.3-1.0 Mn, bal Fe, wt%) in the camshaft shows a columnar structure of $\gamma$-phase growing from the steel pipe. Liquid phase sintered 60Fe-40Cu alloys are carburized to simulate the brazing process giving rise to the columnar growth. Liquid film migrations and columnar growth of $\gamma$-grains are observed in the carburized regions. The $\gamma$-grains grow in the same direction as the C-diffusion. Fe-solubility in the liquid of carburized region is higher than in the uncarburized by about 0.3 at%. The columnar growth is driven by the gradient of the supersaturated Fe-solute in the liquid between two adjacent $\gamma$-grains.

  • PDF

Measurement of Residual Stress of AlN Thin Films Deposited by Two-Facing-Targets (TFT) Sputtering System (Two-Facing-Targets (TFT) 스퍼터링장치를 이용하여 증착한 AlN박막의 잔류응력 측정)

  • Han, Chang-Suk;Kwon, Yong-Jun
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.697-703
    • /
    • 2021
  • Aluminum nitride having a dense hexagonal structure is used as a high-temperature material because of its excellent heat resistance and high mechanical strength; its excellent piezoelectric properties are also attracting attention. The structure and residual stress of AlN thin films formed on glass substrate using TFT sputtering system are examined by XRD. The deposition conditions are nitrogen gas pressures of 1 × 10-2, 6 × 10-3, and 3 × 10-3, substrate temperature of 523 K, and sputtering time of 120 min. The structure of the AlN thin film is columnar, having a c-axis, i.e., a <00·1> orientation, which is the normal direction of the glass substrate. An X-ray stress measurement method for crystalline thin films with orientation properties such as columnar structure is proposed and applied to the residual stress measurement of AlN thin films with orientation <00·1>. Strength of diffraction lines other than 00·2 diffraction is very weak. As a result of stress measurement using AlN powder sample as a comparative standard sample, tensile residual stress is obtained when the nitrogen gas pressure is low, but the gas pressure increases as the residual stress is shifts toward compression. At low gas pressure, the unit cell expands due to the incorporation of excess nitrogen atoms.

Ceramic Coating by Electron Beam PVD for Nanos-Tructure Control (나노구조 제어를 위한 EB-PVD법에 의반 세라믹스 코팅)

  • Matsbara, Hideaki
    • Ceramist
    • /
    • v.9 no.6
    • /
    • pp.24-29
    • /
    • 2006
  • Electron beam physical vapor deposition (EB-PVD) process has currently been applied to thermal barrier coatings (TBCs) for aircraft engines. Due to unique columnar structure, EB-PVD TBCs have advantages in resistances to thermal shock and thermal cycle for their applications, compared to films prepared by plasma spray By the EB-PVD equipment, we successfully obtained yttria-stabilized zirconia (YSZ) layer which has columnar and feather like structure including a large amount of nano size pores and gaps. The EB-PVD technique has been developed for coating functional perovskite type oxides such as (La, Sr)MnO3. Electrode properties have been improved by interface and structural control.

  • PDF

A Study of Columnar Joint in Goheung, Jeollanam-do, Korea (전라남도 고흥지역에 분포하는 주상절리에 관한 연구)

  • Son, Jeong-Mo;Ahn, Kun Sang
    • Journal of the Korean earth science society
    • /
    • v.37 no.6
    • /
    • pp.332-345
    • /
    • 2016
  • The columnar joints in Goheung are developed in three places of Yuju-san area, Palyeong-san and Yongbawi area. Vertical and fan-shaped columnar joints which have maximum width 100 m and maximum heigh 50 m are developed in the Yuju-san area Columnar joints are developed next to the road near the the Yuju-san and along the coast of Jijuk-do. Thick columnar joints of maximum width 1m are developed in the Paryeong-san area. Horizontal columnar joints of maximum width 50 cm at length of polygon side are developed on dyke in the Yongbawi area. The columnar joints show high rate of rectangles and pentagons in the number of polygons. The length of polygon side of columnar joints in study area ranges from 10 to 100 cm, and 20 cm among the range appears in high frequency. Columnar joints are developed vertically to the ground from the cooling surface in Yuju-san and Palyeong-san area. Columnar joints in Yongbawi area are developed vertically to the contact of country rocks. As a result, the columnar joints began cooling from the country rock contact. And columnar joints are developed vertically to contact surface. The rocks in columnar joints is rhyolitic welded tuff in Yuju-san and Palyeong-san area, dacite in Yongbawi area. In the acid volcanic rocks flow structure well developed. The white phenocryst mineral about 2 mm size by eye, is usually feldspar, and includes some quartz. The rate of $SiO_2$ is 70wt.% or more. It is the last stage of differentiation to calc-alkaline series. The columnar joints of the Yuju-san area are expected to be distributed along a band that extends to about 1km east of the stone pit.