• Title/Summary/Keyword: Column size

Search Result 754, Processing Time 0.024 seconds

Nitrification/Denitrification of Wastewater in one Column containing Biofilm (Biofilm으로 충전된 단일 Column을 이용한 폐수의 질산화/탈질산화 공정 연구)

  • 배해룡
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.2
    • /
    • pp.79-84
    • /
    • 2002
  • This study investigated possibility of the nitrification and denitrification in one counter-current column with the growth of biofilm attached to its media. This experiment was performed through use of the lab scale reactor composed of the column and settler. The column used was packed with the small size of plastic rings called PALL($1.5{\times}1.5{\;}cm$) with a cylindrical shape. Synthetic wastewater was used in the experiment. The loading rates of carbon (C) and total nitrogen (TN) furnished to the reactor were 0.23 to 1.0 kg COD/m3.d and 0.023 to 1.0 kg N/m3.d, respectively. Major factors controlling the removal efficiencies of COD and TN were the different air flux and volumetric loading rates of COD and TN. The experimental results obtained from this study demonstrated that the removal efficiencies of COD ranged from 90 to 95% and those of TN were from 80 to 83% under the N loading rate of 0.035 and $0.058{\;}kg{\;}N/m^3{\cdot}d$, respectively. The patterns of TN removed were distinctively different on the limit of 50cm of column in depth. This indicated that the nitrification and denitrification occurred near the surface zone of and inside the biofilm respectively, upto the 50cm of the column in depth.

Experimental Distillation of Ethanol-Propanol Mixture Using a Horizontal Column (수평증류를 이용한 에탄올-프로판올 혼합물의 증류실험)

  • Kim, Byoung Chul;Kim, Young Han
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.93-97
    • /
    • 2013
  • A lab-sized distillation experiment was conducted using small-size packings and a horizontal distillation column. The 6.7 mm Raschig ring type packings of stainless steel and a 40 mm glass column were used, and five independent electric heaters were installed in the axial direction to adjust the column inside temperature separately. The temperature was continuously distributed along the column length to provide equivalent equilibrium to the temperature for the separation. From the experimental results, a larger HETP of the column than the vertical distillation column was obtained, but it was found that the practical separation with proper processing capacity and separation efficiency was available.

Experimental Study of High Strength Concrete Beam-Column-Slab Connections subjected to cyclic loading (고강도 콘크리트 보-기둥-슬래브 접합부의 반복하중 실험)

  • 오영훈;오정근;장극관;김윤일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.339-344
    • /
    • 1995
  • In the design of ductile moment-resisting frames (DMRFs) following the strong column-weak beam dsign philosophy, it is desirable that the joint and column remain essentially elastic in order to insure proper energy dissipation and lateral stability of the structure. The joint has been identified as the "weak link" in DMRFs because any stiffness or strength deterioration in this region can lead to substantial drifts and the possibility of collapse due to P-delta effects. Moreover, the engineer is faced with the difficult task of detailing an element whose size is determined by the framing members, but which must resist a set of loads very different from those used in the design of the beams and columns. Four 2/3-scale beam-column-slab joint assemblies were designed according to existing code requirements of ACI 318-89, representing interior joints of DMRFs with reinforced high strength concrete. The influence on aseismic behavior of beam-column joints due to monolithic slab, has been investigated.estigated.

  • PDF

A Hydraulic and Feasibility Study of New Tower Internal in Gas Processing Plants

  • Choo Chang-upp
    • International Journal of Safety
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 2004
  • A new tower internal, which is called CSE, is presented. The CSE is composed of a nozzle perforated in its bottom along the entire periphery and equipped with a multi vane axial swirler at the inlet and hollow cylindrical separator at the outlet of the nozzle. According to the experimental work for obtaining the necessary hydraulic information of the CSE, which is used for preliminary design of a separation column, the CSE showed a stable operation over the wide rage of gas/liquid ratio. However, it caused large pressure drop due to the high gas velocity which should carry liquid droplets through the element. The high pressure drop may cause problems in energy recovery and the application of the CSE can be limited to the high pressure columns. Assuming that the tray efficiency of the CSE is the same with the existing separation columns, the results of the column design showed the size reduction of the column diameters by 30 to $40\%$ and investment cost saving, depending on operating conditions. The application of the CSE to separation column may also contribute to the de-bottlenecking the existing column.

Optimum design of composite steel frames with semi-rigid connections and column bases via genetic algorithm

  • Artar, Musa;Daloglu, Ayse T.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.1035-1053
    • /
    • 2015
  • A genetic algorithm-based minimum weight design method is presented for steel frames containing composite beams, semi-rigid connections and column bases. Genetic Algorithms carry out optimum steel frames by selecting suitable profile sections from a specified list including 128 W sections taken from American Institute of Steel Construction (AISC). The displacement and stress constraints obeying AISC Allowable Stress Design (ASD) specification and geometric (size) constraints are incorporated in the optimization process. Optimum designs of three different plane frames with semi-rigid beam-to-column and column-to-base plate connections are carried out first without considering concrete slab effects on floor beams in finite element analyses. The same optimization procedures are then repeated for the case of frames with composite beams. A program is coded in MATLAB for all optimization procedures. Results obtained from the examples show the applicability and robustness of the method. Moreover, it is proved that consideration of the contribution of concrete on the behavior of the floor beams enables a lighter and more economical design for steel frames with semi-rigid connections and column bases.

Bending Moment Analysis simpiified in Slab Bridges supported by Column Type Piers (기둥 지지된 슬래브교의 모멘트 간략산정법에 관한 연구)

  • Lee, Chae-Gyu;Kim, Young-Ihn;Kim, Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.73-78
    • /
    • 1992
  • It would be much effective that single column type pier is used in concrete slab bridges rather than gravity type pier is used. To determine the longitudinal bonging moment in concrete slab bridges supported by single column type piers, the concept of effective width is applied. By elastic plate theory cooperated with finite element method, the distribution of the longitudinal moment of the slab supported by single column type piers is studied. The main variables are span, width, and thickness of the slab and column section size. Then the analytical results obtained are summarized and analysed to evaluate the maximum longitudinal negative moment by simple beam analysis.

  • PDF

Size Measurements of Droplets Entrained in a Stagnant Bubbling Liquid Column

  • Jeong, Hae-Yong;No, Hee-Cheon;Song, Chul-Hwa;Chung, Moon-Ki
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.254-259
    • /
    • 1996
  • Phase Doppler particle analyze. (PDPA) is a instrument which can be used to obtain simultaneous size and velocity measurements in a multiphase flow. In this study, the size of the water droplets entrained from a bubbling surface of a stagnant liquid column is measured by PDPA with a specially designed transmitter of long focal length and large beam diameter. The test section tube is made of acryle with 18 mm I.D. and 900 mm length. The experimental data are obtained for the air superficial velocity between 0.7 m/s to 3.4 m/s at atmospheric pressure. The experimental results show that there exists large difference in the entrainment mechanism between the churn-turbulent flow and annular flow. Through the present study, the phase Doppler analyzer system is shown to be successfully applied to measure particle sizes larger than $2,000\mu\textrm{m}$ if a transmitter of long focal length is utilized.

  • PDF

An experimental study on the atomizing characteristics of liquid column type coaxial sprays (액주형 동축노즐 분무의 무화특성에 관한 실험적 연구)

  • 노병준;강신재;오제하
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.41-53
    • /
    • 1992
  • The main purpose of this study is to investigate the atomizing characteristics of a two phase spray by using a liquid column type coaxial nozzle. The experiments have been carried out to analyze the atomization behavior, the droplet size distributions, and the statistical properties of droplet size distributions. Immersion sampling method and the image processing technique were adapted for the measurements of particles, and the distributions of the droplet sizes were statistically analyzed. In the experiments, the mass ratio defined as Mr= $M_{\sigma}$/ $M_{1}$ has been changed from 1.0 to 3.4 and the measurements have been performed along the axis of the spray. As a result of this experimental study, the distributions of droplet size were satisfied with the Log-Normal distributions and arithmetic mean diameter and deviation of mass ratio. Droplet volume-surface mean diameter was denoted by a exponential function of mass-ratio and the exponent was denoted by linear relation according to the central axis from the nozzle. Dispersions, skewness factors and flatness factors had comparatively constant values regardless of mass ratio and location.

  • PDF

Prediction of Fate of Resuspended Sediment in the Development of Deep-sea Mineral Resources (심해저 자원 개발과정에서 재부유 퇴적물 입자의 동태 예측에 관한 연구)

  • Lee, Du-Gon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.45-50
    • /
    • 2002
  • This study presents a modeling method to predict fate of resuspended sediment in the development of deep-sea mineral resources. Resuspended deep-sea sediment during the development is considered a major environmental problem. In order to quantitatively analyze the resuspended sediment in the water column, particle size distribution (PSD) is considered an important factor. The model developed here includes PSD and coagulation process, as well as sedimentation process. Using the model, basic simulation was performed under representative environmental setting. The simulation showed the dynamics of change of particle size distribution for 50 m depth of water column up to 10 days of simulation time. Coagulation seemed an important factor in the fate of resuspended deep-sea sediment.

  • PDF

Investigation of rotational characteristics of column 'PINNED' bases of steel portal frames

  • Liu, Timothy Chi-Ho
    • Steel and Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.187-200
    • /
    • 2001
  • Most of the portal frames are designed these days by the application of plastic analysis, with the normal assumption being made that the column bases are pinned. However, the couple produced by the compression action of the inner column flange and the tension in the holding down bolts will inevitably generate some moment resistance and rotational stiffness. Full-scale portal frame tests conducted during a previous research program had suggested that this moment can be as much as 20% of the moment of resistance of the column. The size of this moment of resistance is particularly important for the design of the tensile capacity of the holding down bolts and also the bearing resistance of the foundation. The present research program is aiming at defining this moment of resistance in simple design terms so that it could be included in the design of the frame. The investigation also included the study of the semi-rigid behaviour of the column base/foundation, which, to a certain extent, affects the overall loading capacity and stiffness of the portal frames. A series of column bases with various details were tested and were used to calibrate a finite element model which is able to simulate the action of the holding down bolts, the effect of the concrete foundation and the deformation of the base plate.