• Title/Summary/Keyword: Column reactors

Search Result 42, Processing Time 0.024 seconds

Treatment of $NH_3-N$ in Drinking Water Using Ion Exchange (이온교환을 이용한 음용수의 $NH_3-N$ 처리)

  • Chae, Yong-Gon
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.1
    • /
    • pp.67-72
    • /
    • 2008
  • Ion exchange performance to remove Ammonium in water was studied using commercially available strong acidic cationic exchange resin of $Na^+$ type in the batch and continuous column reactors. The performance was tested using the effluent concentration histories for continuous column or equilibrium concentrations for batch reactor as a function of time until resins were exhausted or reached ionic equilibrium between resin and solution. The results shoed that cationic exchange resin used in this study was more effective than activated carbon or zeolite for ammonium removal. Ammonium removal with the ion exchange resin temperature to be high qualitative recording minuteness but increases about seasonal change of temperature was judged with the public law where the adaptability is excellent. When the pH comes to be high at 11 degree, the ammonium was not effectively removed.

Basic Study for Development of Denitrogenation Process by ion Exchange(II) (이온교환법에 의한 탈질소 공정개발의 기초연구(II))

  • 이민규;주창식
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.89-95
    • /
    • 1998
  • Ion exchange performance to remove nitrate in water was studied using commercially available strong base anion exchange resin of Cl- type in the batch and continuous column reactors. The performance was tested using the effluent concentration histories for continuous column or equilibrium conquilibrium between resin and solution. Anion exchange resin used in this study was more effective than activated carbon or zeolite for nitrate removal. With large resin amount or low initial concentration, nitrate removal characteristics for a typical gel-type resin was Increased. On considering the relation between the breakthrough capacity and nitrate concentration of the influent, the use of anion exchange resin were suitable for the hi선or order water treatment. The nitrate removal of above 90% could be possible until the effluent of above 650 BV was passed to the column. Thus, the commercially available strong base anion exchange resin of $Cl^-$ type used in thins study could be effectively used as economic material for treatment of the groundwater. The breakthrough curves showed the sequence of resin selectivity as $SO_4^{2-}$ > $NO_3$ > $NO^{2-}$ > $HCO_3^-$. The results of this study could be scaled up and used as a design tool for the water purification system of the real groundwater and surface water treatment processes.

  • PDF

Removal of Manganese(II) from Aqueous Solution Using Manganese Coated Media (망간코팅 여재를 이용한 수용액상의 망간 제거연구)

  • Kim, Seok-Jun;Kim, Won-Gee;Lee, Seung-Mok;Yang, Jae-Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.454-459
    • /
    • 2010
  • This study investigated the applicability of manganese coated media such as manganese coated sand (MCS), manganese coated sericite (MCSe) and manganese coated starfish material calcined at $550^{\circ}C$ (MCSf) to remove Mn(II) in synthetic wastewater. Manganese coated media prepared at different pH was applied in the treatment of soluble Mn(II) in batch and column experiments at various Mn(II) concentrations. The amount of Mn coated on three different media was approximately 800~1100 mg/kg. From the stability test, negligible dissolution of Mn was observed above pH 3.0. In batch test, more than 40% of Mn(II) was removed by all sand media at various manganese concentrations. In order to see the effect of additional oxidant for the removal of Mn(II), 4 mg/L of hypochlorite was added in Mn(II) solution during column experiment. Breakthrough of Mn(II) was greatly retarded in the presence of hypochlorite in all column reactors packed with different media. Among the manganese coated media, MCSf prepared at pH 4 indicated the highest removal capacity. The removal efficiency of Mn(II) was also increased in the multi-layer system (0.5 g of MCS, MCSe, and MCSf each).

Basic Study for Development of Denitrogenation Process by Ion Exchange(IV) -A Kinetic Study in Continuous Column and an Economic Analysis- (이온교환법에 의한 탈질소 공정개발의 기초연구(IV) -연속식 반응기에서의 속도론과 경제성 분석-)

  • Lee, Min-Gyu;Ju, Chang-Sik;Chae, Yong-Gon;Kim, Sung-Il;Lee, Dong-Hwan;Yoon, Tae-Kyung
    • Journal of Environmental Science International
    • /
    • v.9 no.3
    • /
    • pp.261-266
    • /
    • 2000
  • A kinetic study for nitrate removal by anion exchange resin was performed using continuous column reactors. Kinetic approach from the packed bed showed the reaction rate constant k$_1$ was 0.07~0.17 $\ell$/mgㆍhr and maximum exchange quantity q$_{o}$ was 27.75~31.81 mg/g. The results from the continuous column well agreed with that from the batch reactor. An economic analysis of the water treatment plant by anion exchange resin with a regenerating system was performed to design plant and process. Based on the treatment of 20 mg/$\ell$ nitrate-contained wastewater of 10,000 gallons per day to 2 mg/$\ell$, total capital cost and total annual cost are estimated to be 836 million wons and 211 million wons, respectively.y.

  • PDF

Ammonia Nitrogen Removal by Cation Exchange Resin (양이온 교환수지에 의한 암모니아성 질소 제거)

  • 이동환;이민규
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.263-269
    • /
    • 2002
  • This study was conducted to know the removal characteristics of ammonia nitrogen by commercially available cation exchange resins. Eight acidic cation exchange resins were investigated in batch reactors. Among them, the most effective resin for ammonia removal in solution was PK228, which was a strong acidic resin of $Na^{+}$ type. PK228 was compared with activated carbon and natural zeolite. The effects of cation exchange capacity, ammonia concentration, resin amount, temperature and pH on ammonia removal by PK228 were investigated in batch reactor, and the effect of effluent velocity in continuous column reactor. Strong acidic resins of porous type were more effective than week acidic resins or gel type resins for ammonia removal in solution. PK228 was more effective than activated carbon and natural zeolite for ammonia removal in batch reactor. With increasing initial ammonia concentration, the amount of ammonia removed by PK228 increased, but the proportion of removed ammonia to initial ammonia concentration decreased. The effect or temperature on ammonia removal by PK228 was very slight. The ammonia removal to acidic solution was more effective than that at basic solution. With decreasing effluent velocity of solution through column, breakthrough point extended, and ammonia removal capacity increased.d.

Removal of Nitrate in Column Reactors Using Surfactant Modified Zeolite (SMZ를 이용한 컬럼반응조 내 질산성 질소의 제거)

  • 박규홍;이동호
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.2
    • /
    • pp.55-61
    • /
    • 2003
  • The objective of this study was to investigate the characteristics of nitrate removal by conducting the column test in order to see the performance of surfactant modified zeolite (SMZ) as a permeable reactive barrier material. The prediction of nitrate removal was tested using the one-dimensional advective-dispersive model fitted to the experimental breakthrough curve. A methodology for scaling up to in-situ permeable reactive barrier was also proposed. The breakthrough of nitrate in the column packed with SMZ was well predicted using linear equilibrium adsorption model. The breakthrough time and half-life obtained by breakthrough experiment with variation of flowrates were decreased with the increase of flowrates. When 10㎥/day of groundwater containing the 50 mg/l of nitrate is to be treated to satisfy the potable water quality criteria (10 mg/l) by SMZ reactive barrier, 300 tons of SMZ and about 6 years of breakthrough time will be required, suggesting that 165 million wons are needed as barrier material expenses in each 6 years besides the initial design and construction expenses and the minimal monitoring and maintenance expenses.

Power upgrading of WWR-S research reactor using plate-type fuel elements part I: Steady-state thermal-hydraulic analysis (forced convection cooling mode)

  • Alyan, Adel;El-Koliel, Moustafa S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1417-1428
    • /
    • 2020
  • The design of a nuclear reactor core requires basic thermal-hydraulic information concerning the heat transfer regime at which onset of nucleate boiling (ONB) will occur, the pressure drop and flow rate through the reactor core, the temperature and power distributions in the reactor core, the departure from nucleate boiling (DNB), the condition for onset of flow instability (OFI), in addition to, the critical velocity beyond which the fuel elements will collapse. These values depend on coolant velocity, fuel element geometry, inlet temperature, flow direction and water column above the top of the reactor core. Enough safety margins to ONB, DNB and OFI must-emphasized. A heat transfer package is used for calculating convection heat transfer coefficient in single phase turbulent, transition and laminar regimes. The main objective of this paper is to study the possibility of power upgrading of WWR-S research reactor from 2 to 10 MWth. This study presents a one-dimensional mathematical model (axial direction) for steady-state thermal-hydraulic design and analysis of the upgraded WWR-S reactor in which two types of plate fuel elements are employed. FOR-CONV computer program is developed for the needs of the power upgrading of WWR-S reactor up to 10 MWth.

Study on failure mechanism of line contact structures of nuclear graphite

  • Jia, Shigang;Yi, Yanan;Wang, Lu;Liu, Guangyan;Ma, Qinwei;Sun, Libin;Shi, Li;Ma, Shaopeng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2989-2998
    • /
    • 2022
  • Line contact structures, such as the contact between graphite brick and graphite tenon, widely exist in high-temperature gas-cooled reactors. Due to the stress concentration effect, the line contact area is one of the dangerous positions prone to failure in the nuclear reactor core. In this paper, the failure mechanism of line contact structures composed of IG11 nuclear graphite column and brick were investigated by means of experiment and finite element simulation. It was found that the failure process mainly includes three stages: firstly, the damage accumulation in nuclear graphite material led to the characteristic yielding of the line contact structure, but no macroscopic failure can be observed at this stage; secondly, the stresses near the contact area met Mohr failure criterion, and a crack initiated and propagated laterally in the contact zone, that is, local macroscopic failure occurred at this stage; finally, a second crack initiated in the contact area and developed in to a Y-shape, resulting in the final failure of the structure. This study lays a foundation for the structural design and safety assessment of high-temperature gas-cooled reactors.

Effects of Operating Variables on the Conversion of Meta Boric Acid Formation in a Bubble Column Reactor (기포탑 반응기에서 조작변수가 meta 붕산 생성반응 전환율에 미치는 영향)

  • Cho, Soo-Haeng;Do, Jae-Bum;Kang, Y.
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.573-579
    • /
    • 1996
  • Effects of operating variables on the conversion of the formation reaction of meta boric acid from ortho boric acid in a laboratory-scale bubble column reactor were investigated to obtain the basic data which are indispensable for the design, scale-up, control, development and operation of industrial bubble column reactors. Reaction time and pressure, particle size of reactant and gas flow rate were chosen as experimental variables. Effects of the experimental variables on the gas holdup in the bubble column reactor were also discussed in relation to the conversion of reaction. From the results of this study, the optimum conditions were drawn as follows : Reaction time ; 35~40(min), reaction pressure ; 92~95(kPa), particle size ; under $0.6{\times}10^{-3}(m)$, gas flow rate ; 0.07~0.08(m/s).

  • PDF

Scaling of Gas-Slurry Mass transfer in Three-phase Bubble Column Reactors (삼상슬러리 기포탑 반응기에서 기체-슬러리 물질전달의 Scaling)

  • Lim, Hyunoh;Seo, Myungjae;Kang, Yong;Jung, Heon;Lee, Hotae;Kim, Sangdon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.111.2-111.2
    • /
    • 2010
  • 삼상슬러리 기포탑 반응기의 설계 및 Scale-up을 위하여 기포탑의 직경변화에 따른 기체-슬러리 계면에서의 물질전달 현상의 Similarity를 검토하고, 기체-슬러리 계면에서의 물질전달 현상과 슬러리 기포탑 반응기의 운전변수 및 반응물들의 물성들과의 연관성을 고찰하기 위하여 삼상슬러리 기포탑의 물질전달계(System)에서 주요 파라메타를 도출하였으며, 이들 파라메터들을 이용하여 슬러리 기포탑반응기의 물질전달 Scaling을 검토하였다. 물질전달계의 주요제어인자로는 기체-액체 부피물질전달계수($k_La$), 슬러리상의 확산도($D_{SL}$), 기포탑의 직경(D), 기포탑 반응기에 유입되는 기체의 유입속도($U_G$), 기포탑 반응기 내부의 연속상인 슬러리상의 표면장력(${\sigma}_{SL}$), 슬러리상과 기체상간의 밀도차(${\rho}_{SL}-{\rho}_G$) 그리고 슬러리상의 점도(${\mu}_{SL}$)등 슬러리 상의 물성을 선정하였으며 중력가속도(g)를 선정하였다. 물질전달계의 Scling을 검토하기위하여 이를 재구성하였으며 기포탑 반응기의 구조와 직경이 변화함에 따라 이들 무차원군의 변화양상을 고찰하였다. 실험적으로 측정된 물질전달계수와 Scaling에 의해 예측된 물질전달계수를 비교 검토함으로써 본 연구의 Correlation의 적용범위를 제시하였다.

  • PDF