• Title/Summary/Keyword: Column design

Search Result 1,825, Processing Time 0.031 seconds

Research of geothermal analysis and experimental test for Standing Column Well type system (우물관정(SCW: Standing Column Well)형 냉난방 시스템의 지중열 해석과 실증 실험에 관한 연구)

  • Kwon, Iksang;Hong, Gibae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.173-173
    • /
    • 2010
  • This thesis identified basic design elements (Sustainable Yield, Temperature of Groundwater, Depth of Well, Separation Distance between wells) regarding installation of Standing Column Well, Geothermal Heat pump System by dynamic analysis.

  • PDF

Seismic Analysis and Reinforcement Details of Integral Pile Shaft-Column Foundations (말뚝-기둥 일체형 교각 기초의 내진해석 및 철근 상세)

  • Son, Hyeok-Soo;Choi, In-Ki;Lee, Sang-Hee;Yang, Jong-Ho
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.300-307
    • /
    • 2006
  • Integral pile shaft-column foundations are increasingly popular thanks to not only the comparative advantage of economy in constructing large cast-in-drilled-hole(CIDH) piles compared with driven piles with pile cap footings but also being free from problems associated with the critical column-footing connection. In this paper, the structural characteristics of integral pile shaft-column foundations as well as seismic analysis methodology and reinforcement details for seismic design are introduced.

  • PDF

Development for Connection Details between Flat Plate Slab and H-Steel Column (무량판 슬래브와 H형강 기둥 접합부 상세 개발)

  • Yoon, Myung-Ho;Lee, Yoon-Hee
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • The flat plate slab system have many good features, which are design flexibilities, saving of story-height and economy of construction etc. But the study of flat plate slab system for H-steel column have been rare both at home and abroad. Recently high-rise residential and commercial buildings have been constructed in urban areas in Korea. The suggested dowel connection system is more likely to adoptable because it remarkably contribute to save inter story height and also to have many advantages compared with conventional steel works such as H-Steel frame + Deck plate slab system. This study aims at developing design method and program for connection between H-Steel column and flat plate slab system, which contribute to save significantly inter-story height.

Inelastic Behavior of the SRC Column (SRC 합성교각의 비탄성 거동)

  • Jung, In-Keun;Min, Jin;Shim, Chang-Su;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.300-307
    • /
    • 2005
  • Steel Reinforced Concrete (SRC) composite column has several advantage such as excellent durability, rapid construction, reduction of column section. Due to these aspect, applications of SRC columns to bridge piers are continuously increasing. For the design of relatively large SRC columns for bridge piers, it is necessary to check the current design provisions which were based on small section having higher steel ratio. In this study, seven concrete encased composite columns were fabricated and static tests were performed. Embedded steel members were a H-shape rolled beam and a partially filled steel tube. Based on the test results, the ultimate strength according to section details and local behavior were estimated. For the analysis of inelastic behavior of the SRC column, the cracked section stiffness of the columns was evaluated and compared with calculations. The stiffness of the cracked section showed that 25% of the initial value and this stiffness reduction occurred at 85% of the ultimate load in the experiments.

  • PDF

Strength Prediction of Exterior Beam-column Joint using 3D Strut-Tie Model (3차원 스트럿-타이 모델을 이용한 외측 보-기둥 접합부의 강도 예측)

  • Yun Young Mook;Kim Byung Hun;Lee Won Seok;Shin Hyo Jeong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.183-186
    • /
    • 2005
  • The Current design procedures of ACI 318-02 and CEB-FIP for the exterior beam-column joints do not provide engineers with a clear understanding of the physical behavior of the beam-column joints. In this paper, the failure strengths of the exterior beam-column joint specimens tested to failure were evaluated using the approach implementing 3-dimensional strut-tie models, design criteria of ACI 318-02, ACI-ASCE committee 352 and Park and paulay, and softened strut-tie model approach. The analysis results obtained from the 3-dimensional strut-tie models were compared with those obtained from the other approaches, and the validity of the approach implementing 3-dimensional strut-tie models were examined.

  • PDF

Design of Thermally Coupled Distillation Process Utilizing Existing Columns (기존 증류탑을 이용한 열복합 증류공정의 설계)

  • Lee, Moon Yong;Kim, Young Han
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.1017-1022
    • /
    • 2008
  • Though many divided wall columns are implemented in field as energy-efficient distillation columns, its application is limited due to the difficulty of building a new column. A novel energy-efficient distillation system utilizing the existing columns is proposed here. The proposed can reduce the energy consumption by about 39% comparing with the existing system. And it is shown that the proposed improves the column operability over the existing. The tray numbers of the added columns have no significant influence on the composition of a side draw.

Application of Energy-Efficient Distillation System in Ethanol Process (에너지 절약형 증류시스템의 에탄올 제조공정에의 응용)

  • Lee, Moon Yong;Kim, Young Han
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.892-897
    • /
    • 2008
  • A new ethanol dehydration process utilizing a thermally coupled distillation column is proposed to reduce the energy requirement of the existing dehydration processes. An entrainer of benzene is used in the proposed system having the column profile similar to the equilibrium composition profile for the maximum distillation column efficiency, and the feed composition is arranged to close to the boundary of different distillation regions. It is found that the proposed distillation system gives some 18% of energy saving over the existing process. In addition, design guidelines are suggested for other azeotropic distillation process.

Bolted end plate connections for steel reinforced concrete composite structures

  • Li, Xian;Wu, Yuntian;Mao, Weifeng;Xiao, Yan;Anderson, J.C.;Guo, Yurong
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.291-306
    • /
    • 2006
  • In order to improve the constructability and meanwhile ensure excellent seismic behavior, several innovative composite connection details were conceived and studied by the authors. This paper reports experimental results and observations on seismic behavior of steel beam bolted to reinforced concrete column connections (bolted RCS or BRCS). The proposed composite connection details involve post tensioning the end plates of the steel beams to the reinforced concrete or precast concrete columns using high-strength steel rods. A rational design procedure was proposed to assure a ductile behavior of the composite structure. Strut-and-tie model analysis indicates that a bolted composite connection has a favorable stress transfer mechanism. The excellent capacity and behavior were then validated through five full-scale beam to column connection model tests.

Behavior of exterior reinforced concrete beam-column joints including a new reinforcement

  • Fisher, Matthew J.;Sezen, Halil
    • Structural Engineering and Mechanics
    • /
    • v.40 no.6
    • /
    • pp.867-883
    • /
    • 2011
  • Six reinforced concrete beam-column joint specimens were constructed and tested under reverse cyclic loading to failure. The six specimens were divided into three groups, each group representing a different joint design. The main objectives of this study are to investigate the response of joints with three different design, reinforcement detailing and beam strengths, and to evaluate and compare the responses of beam-column joints reinforced with traditional steel rebar and a recently proposed steel reinforcement called prefabricated cage system (PCS). Each of the three test specimen designs included equivalent amount of steel reinforcement and had virtually identical details. The results of the research show that the PCS reinforced joints had a slightly higher strength and significantly larger deformation capacity than the equivalent rebar reinforced joints.

Strength Prediction of Interior Beam-column Joint using 3D Strut-Tie Model (3차원 스트럿-타이 모델을 이용한 내측 보-기둥 접합부의 강도 예측)

  • Yun, Young-Mook;Kim, Byung-Hun;Lee, Won-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.405-408
    • /
    • 2004
  • The current design procedures of ACI 318-02, CE3-FIP and NZS 3101 for interior beam-column joints do not provide engineers with a clear understanding of the physical behavior of beam-column joints. In this paper, the failure strengths of the interior beam-column joint specimens tested to failure were evaluated using the 3-dimensional strut-tie model approach, design criteria of ACI 318-02, ACI-ASCE committee 352 and Park and paulay, and softened strut-tie model approach. The analysis results obtained from the 3-dimensional strut-tie model approach were compared with those obtained from the other approaches, and the validity of the approach implementing a 3-dimensional strut-tie model was examined.

  • PDF