• 제목/요약/키워드: Column Shortening

검색결과 84건 처리시간 0.025초

매개변수에 따른 기둥축소량 변화에 관한 연구 (Variations of Column Shortening with Parameters)

  • 정은호;김형래
    • 콘크리트학회논문집
    • /
    • 제12권4호
    • /
    • pp.59-67
    • /
    • 2000
  • With increased height of structure, the effect of column shortening need special consideration in the design and construction of high-rise buildings. The shortening of each column affects nonstructural members such as partitions, cladding, and M/E systems, which are not designed to carry gravity forces. The slabs and beams will tilt due to the cumulative differential shortening of adeacent vertical members. The main purpose of estimating the total shortening of vertical structural member is to compensate the differential shortening between adeacent members. This paper presents effect of parameters for phenomenon of column shortening in vertical members. The paper presents effect of parameters for phenomenon of column shortening in vertical members. The conclusions obtained from this study are follow as ; Strength of concrete and steel ratio effected on column shortening caused by elastic and inelastic shortening. Also, it is known that Ultimate-shrinkage-Value, Specific-Creep-Value, and volume to surface ratio effected on inelastic shortening only. Particularly, Ultimate-Shrinkage-Value and Specific-Creep-Value effected considerable on the amount of total column shortening.

Evaluation of the influence of creep and shrinkage determinants on column shortening in mid-rise buildings

  • B-Jahromi, Ali;Rotimi, Abdulazeez;Tovi, Shivan;Goodchild, Charles;Rizzuto, Joseph
    • Advances in concrete construction
    • /
    • 제5권2호
    • /
    • pp.155-171
    • /
    • 2017
  • The phenomenon of concrete column shortening has been widely acknowledged since it first became apparent in the 1960s. Axial column shortening is due to the combined effect of elastic and inelastic deformations, shrinkage and creep. This study aims to investigate the effects of ambient temperature, relative humidity, cement hardening speed and aggregate type on concrete column shortening. The investigation was conducted using a column shortening prediction model which is underpinned by the Eurocode 2. Critical analysis and evaluation of the results showed that the concrete aggregate types used in the concrete have significant impact on column shortening. Generally, aggregates with higher moduli of elasticity hold the best results in terms of shortening. Cement type used is another significant factor, as using slow hardening cement gives better results compared to rapid hardening cement. This study also showed that environmental factors, namely, ambient temperature and relative humidity have less impact on column shortening.

37층 초고층주상복합건물 SRC기둥의 기둥축소량 현장계측 및 보정법 (Field Measurement and Compensation Method of Column Shortening for SRC Columns in 37-story Residential Building)

  • 송화철;도근영;조훈희
    • 한국건축시공학회지
    • /
    • 제5권4호
    • /
    • pp.145-152
    • /
    • 2005
  • Long-term axial shortening of the vertical elements of tail buildings results in differential movements between two elements and may lead to the additional moments of connection beam and slab elements, and other secondary effects, such as cracks of partitions or curtain walls. Accurate prediction of time-dependent column shortening is essential for tall buildings from both strength and serviceability aspects. The compensation method is different from reinforced concrete and SRC(Steel Reinforced Concrete) members. The SRC columns are usually compensated according to total differential shortening between two vertical elements. In this study, column shortenings of 37-story W building under construction are predicted and compensated. The SRC column shortenings are compared with the actual column shortening by field measurement and the column shortenings are reanalysed and recompensated.

전이층을 가진 초고층건물의 기둥축소량 예측 및 현장계측 (Column Shortening prediction and Field measurement of Tall building with Transfer floor)

  • 송화철;조용수;정성진;윤광섭;이우호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.175-181
    • /
    • 2006
  • The prediction of time-dependent column shortening is essential for tall buildings considering both strength and serviceability aspects. The Column shortening of tall buildings with transfer floor should be calculated considering the long-term deflection of transfer girder. In this study, both the column shortening and the deflection of transfer girder of 45-story tall concrete building are predicted. The column shortening considering deflection of transfer girder are compared with the actual column shortening by field measurement.

  • PDF

고층건물 기둥의 부등축소량 예측 및 시공오차 보정에 관한 연구 (Prediction and Compensation of Differential Column Shortening in High-Rise Building Structures)

  • 조창휘;송진규;이현호;조석희
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.258-266
    • /
    • 1996
  • The purpose of this study is to make a reasonable correction in construction stage through exact prediction of long-time differential column shortening that occurs in the high-rise RC building. For this, a self-developed program adopted PCA code is used to predict differential column shortening with sequential loading process. Using this program, the amount of the different column shortening of Amatapura Apartment in Indonesia is predicted and the effect is analyzed. From the result, the major factor affecting the shortening amount in columns is elastic strain and the effect of shrinkage is very small rather than creep. And maximun differential column shortening is appeared near the middle of the building.

  • PDF

기둥축소량 보정법에 있어서 시공성 향상을 위한 RC 슬래브 표면마무리에 관한 연구 (A study on the finish work of Reinforced Con'c slab for improving workability in the column shortening compensation.)

  • 소광호;이재옥;양극영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.147-152
    • /
    • 2003
  • Passage of time axial shortening in the cores and columns of tall concrete buildings requires special attention to ensure proper behavior for strength of the structure and the nonstructural element. The effects of column shortening, both elastic and inelastic, take on added significance and need special consideration in design and construction with increased height of structures. In this paper, the compensation method of column shortening for reinforced concrete structure are introduced. It could be concluded that the survey is a significant factor for the compensation instance of column shortening.

  • PDF

아웃리거에 의한 부등기둥축소 감소효과 (Reduction of differential column shortening due to outrigger)

  • 신승학;김한수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.149-150
    • /
    • 2010
  • 본 연구는 구조물의 부등기둥축소를 감소시키기 위한 최적의 아웃리거 설치위치를 제안한다. 부등기둥축소를 줄이기 위한 아웃리거의 최적위치는 아웃리거가 설치되지 않을 경우에 가장 큰 부등기둥축소를 보이는 위치임을 알 수 있었다.

  • PDF

기둥축소량 보정을 위한 기둥의 최적그루핑기법 (The Optimal Column Grouping Technique for the Compensation of Column Shortening)

  • 김영민
    • 한국전산구조공학회논문집
    • /
    • 제24권2호
    • /
    • pp.141-148
    • /
    • 2011
  • 본 논문에서는 기둥축소량 보정의 효율성을 증진시키기 위한 방안으로서 유사한 축소 경향을 보이는 기둥들을 동일 그룹으로 묶는 기둥의 최적그루핑기법에 대하여 연구하였다. 기둥의 최적그루핑은 무감독학습에 의해 입력데이타의 패턴을 스스로 분류할 수 있는 코호넨의 자기조직화 형상지도 알고리즘을 이용하였다. 본 연구에 적용된 코호넨 네트워크는 두 개의 입력뉴런과 분류할 기둥그룹 개수만큼의 출력뉴런으로 구성된다. 입력뉴런에는 기둥축소량의 정규화된 평균과 표준편차가 입력되며, 출력뉴런에는 각 기둥이 속하게 될 기둥그룹이 출력된다. 제안된 알고리즘을 실제 축소량 해석이 수행된 두 개의 건물에 적용하여 그 적용성을 평가하였다. 적용결과 동일 그룹으로 분류된 기둥들은 서로 인접하고 있으며 서로 다른 기둥그룹끼리는 교차하지 않는 등 유사한 축소 경향을 보였다. 이로부터 본 연구의 기둥축소량의 최적그루핑 알고리즘은 충분한 실무적용성이 있음을 확인하였다.

초고층건물의 기둥축소량 예측, 계측 및 보정 (Prediction, Field Measurement and Compensation of Column Shortening in Tall Building)

  • 조석희;김한수;김도균
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.143-146
    • /
    • 2003
  • Tall Buildings have been popular in recent years. Tall buildings require special consideration to design and construction due to their structural features. Column shortening is one of the important technologies to be considered in. The long-term deformations of concrete cause vertical shortening on cores and columns, trigger deformations on cladding, partitions and finishes, and damage their serviceability. This also affects structural stability by inducing unexpected stress to the structural members such as outrigger. The main objective of this paper is to re-evaluate column shortening according to revised field information and to compare the analysis results with the actual field measurement. Mok-Dong Hyperion, a 69-story apartment building which is currently under construction, was chosen for the case study.

  • PDF

초고층 건축물의 기둥축소량 해석 및 현장계측 - 해운대 아이파크 (Column Shortening Analysis and Field Measurement of Haeundae I'Park)

  • 정광량;이대용;송호범;박광민
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 2부
    • /
    • pp.67-70
    • /
    • 2011
  • The effect of column shortening is a major consideration in design and construction of tall buildings, especially in concrete and composite structural systems. To avoid unexpected demage in structural and nonstructural elements, differential shortening between vertical members resulting from differing stress levels, loading histories, volume-to-surface ratios and other factors in a high-rise building must be properly considered in the design process. This paper represents analyzed and measured shortening results of RC cores and columns at the 72 story Haeundae I'Park. It shows that WACS program based on ACI and PCA material model is effective for the prediction of column shortening.

  • PDF