• Title/Summary/Keyword: Colored and timed Petri-Net

Search Result 6, Processing Time 0.018 seconds

Fuzzy Colored Timed Petri Nets for Context Inference (상황 추론을 위한 Fuzzy Colored Timed Petri Net)

  • Lee Keon-Myung;Lee Kyung-Mi;Hwang Kyung-Soon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.291-296
    • /
    • 2006
  • In context-aware computing environment, some context is characterized by a single event, but many other contexts are determined by a sequence of events which happen with some timing constraints. Therefore context inference could be conducted by monitoring the sequence of event occurrence along with checking their conformance with timing constraints. Some context could be described with fuzzy concepts instead of concrete concepts. Multiple entities may interact with a service system in the context-aware environments, and thus the context inference mechanism should be equipped to handle multiple entities in the same situation. This paper proposes a context inference model which is based on the so-called fuzzy colored timed Petri net. The model represents and handles the sequential occurrence of some events along with involving timing constraints, deals with the multiple entities using the colored Petri net model, and employs the concept of fuzzy tokens to manage the fuzzy concepts.

A study on the real time control of flexible manufacturing system using colored and timed Petri Nets (페트리네트를 이용한 유연생산시스템의 실시간 제어에 관한 연구)

  • 노상도;김기범;김종원;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1099-1104
    • /
    • 1993
  • The real time control system for FMS(Flexible Manufacturing System) is implemented at this paper. To achieve this goal, the Colored and Timed Petri-Net model is constructed and used to simulate the real time operation of FMS. Using the Colored and Timed Petri-Net model, evaluating any kind of FMS plant is possible. On-line shceduler, intelligent dispatcher, real time monitor and the simulation model of shop floor are contructed using LAN communication, relational database system in this paper. Finally, this real time control system is applied to the FMS/CIM center at Seoul National University.

  • PDF

FMS Control and Monitoring using Petri Net (Petri-Net 을 이용한 FMS 제어 및 모니터링)

  • Kim, Go-Joong;Jung, Moo-Young;Jo, Hyeon-Bo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.1
    • /
    • pp.137-151
    • /
    • 1995
  • A difficult problem in operating Flexible Manufacturing Systems (FMS) is to control the system in real-time by coordinating heterogeneous machines and integrating distributed information. The objective of the paper is to present the models and methodologies useful to resolve the difficult problem. The detailed objectives can be described in three folds. First, a hierarchical Colored and Timed Petri-Net (CTPN) is designed to control an FMS in real-time. The concerned FMS consists of a loading station, several machining cells, a material handling system, and an unloading station. Timed-transitions are used to represent the timed-events such as AGV movements between stations and cells, part machining activities in the cells. Signal places are also used to represent communication status between the host and the cell controllers. To resolve the event conflicts and scheduling problems, dispatching rules are introduced and applied. Second, an implementation methodology used to monitor and diagnose the errors occurring on the machines during system operation is proposed. Third, a Petri-Net simulator is developed to experiment with the designed control logic.

  • PDF

A Study on the Design of Flexible Manufacturing Systems by using Petri Nets (페트리네트를 이용한 유연생산시스템 설계에 관한 연구)

  • Kim, G.B.;Lee, K.I.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.166-174
    • /
    • 1995
  • Flelxible Manufacturing Systems(FMS), which consist of various machine groups, can produce machine parts in different physical dimensions and lot sizes. In this paper, a novel method which utilizes Colored and Timed Petri Net is proposed to model a FMS. Each machine group of FMS is modulized and modeled using expanded Petri Nets. Colored and Timed Petri Nets are defined, and the flexible manufacturing systems's design algorithm based on this definition is developed and verified in a real FMS plant by computer simulations.

  • PDF

Petri nets modeling and dynamic scheduling for the back-end line in semiconductor manufacturing (반도체 후공정 라인의 페트리 네트 모델링과 동적 스케쥴링)

  • Jang, Seok-Ho;Hwang, U-Guk;Park, Seung-Gyu;Go, Taek-Beom;Gu, Yeong-Mo;U, Gwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.724-733
    • /
    • 1999
  • An effective method of system modeling and dynamic scheduling for the back-end line of semiconductor manufacturing is proposed. The virtual factory, describing semiconductor manufacturing line, is designed in detail, and then a Petri net model simulator is developed for operation and control of the modular cells of the virtual factory. The petri net model is a colored timed Petri nets (CTPNs). The simulator will be utilized to analyze and evaluate various dynamic status and operatons of manufacturing environments. The dynamic schedulaer has a hierarchical structure with the higher for planning level and the lower for dynamic scheduling level. The genetic algorithm is applied to extract optimal conditions of the scheduling algorithm. The proposed dynamic scheduling is able to realize the semiconductor manufacturing environments for the diversity of products, the variety of orders by many customers, the flexibility of order change by changing market conditions, the complexity of manufacturing processes, and the uncertainty of manufacturing resources. The proposed method of dynamic scheduling is more effective and useful in dealing with such recent pressing requirements including on-time delivery, quick response, and flexibility.

  • PDF

Comprehensive architecture for intelligent adaptive interface in the field of single-human multiple-robot interaction

  • Ilbeygi, Mahdi;Kangavari, Mohammad Reza
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.483-498
    • /
    • 2018
  • Nowadays, with progresses in robotic science, the design and implementation of a mechanism for human-robot interaction with a low workload is inevitable. One notable challenge in this field is the interaction between a single human and a group of robots. Therefore, we propose a new comprehensive framework for single-human multiple-robot remote interaction that can form an efficient intelligent adaptive interaction (IAI). Our interaction system can thoroughly adapt itself to changes in interaction context and user states. Some advantages of our devised IAI framework are lower workload, higher level of situation awareness, and efficient interaction. In this paper, we introduce a new IAI architecture as our comprehensive mechanism. In order to practically examine the architecture, we implemented our proposed IAI to control a group of unmanned aerial vehicles (UAVs) under different scenarios. The results show that our devised IAI framework can effectively reduce human workload and the level of situation awareness, and concurrently foster the mission completion percentage of the UAVs.