• Title/Summary/Keyword: Color-based tracking algorithm

Search Result 122, Processing Time 0.032 seconds

CONTINUOUS PERSON TRACKING ACROSS MULTIPLE ACTIVE CAMERAS USING SHAPE AND COLOR CUES

  • Bumrungkiat, N.;Aramvith, S.;Chalidabhongse, T.H.
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.136-141
    • /
    • 2009
  • This paper proposed a framework for handover method in continuously tracking a person of interest across cooperative pan-tilt-zoom (PTZ) cameras. The algorithm here is based on a robust non-parametric technique for climbing density gradients to find the peak of probability distributions called the mean shift algorithm. Most tracking algorithms use only one cue (such as color). The color features are not always discriminative enough for target localization because illumination or viewpoints tend to change. Moreover the background may be of a color similar to that of the target. In our proposed system, the continuous person tracking across cooperative PTZ cameras by mean shift tracking that using color and shape histogram to be feature distributions. Color and shape distributions of interested person are used to register the target person across cameras. For the first camera, we select interested person for tracking using skin color, cloth color and boundary of body. To handover tracking process between two cameras, the second camera receives color and shape cues of a target person from the first camera and using linear color calibration to help with handover process. Our experimental results demonstrate color and shape feature in mean shift algorithm is capable for continuously and accurately track the target person across cameras.

  • PDF

Object Tracking using Color Histogram and CNN Model (컬러 히스토그램과 CNN 모델을 이용한 객체 추적)

  • Park, Sung-Jun;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.77-83
    • /
    • 2019
  • In this paper, we propose an object tracking algorithm based on color histogram and convolutional neural network model. In order to increase the tracking accuracy, we synthesize generic object tracking using regression network algorithm which is one of the convolutional neural network model-based tracking algorithms and a mean-shift tracking algorithm which is a color histogram-based algorithm. Both algorithms are classified through support vector machine and designed to select an algorithm with higher tracking accuracy. The mean-shift tracking algorithm tends to move the bounding box to a large range when the object tracking fails, thus we improve the accuracy by limiting the movement distance of the bounding box. Also, we improve the performance by initializing the tracking start positions of the two algorithms based on the average brightness and the histogram similarity. As a result, the overall accuracy of the proposed algorithm is 1.6% better than the existing generic object tracking using regression network algorithm.

An Algorithm for Color Object Tracking (색상변화를 갖는 객체추적 알고리즘)

  • Whoang, In-Teck;Choi, Kwang-Nam
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.827-837
    • /
    • 2007
  • Conventional color-based object tracking using Mean Shift algorithm does not provide appropriate result when initial color distribution disappears. In this paper we propose a tracking algorithm that updates the object color sample when the color is changing. Mean Shift analysis is first used to derive the object candidate with maximum increase in density direction from current position. The color information of object is updated iteratively. The proposed algorithm achieves accurate tracking of objects when initial color samples are changed and finally disappeared. The validity of the effective approach is illustrated by the experimental results.

  • PDF

Object Tracking with Radical Change of Color Distribution Using EM algorithm

  • Whoang In-Teck;Choi Kwang-Nam
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.388-390
    • /
    • 2006
  • This paper presents an object tracking with radical change of color. Conventional Mean Shift do not provide appropriate result when major color distribution disappear. Our tracking approach is based on Mean Shift as basic tracking method. However we propose tracking algorithm that shows good results for an object of radical variation. The key idea is iterative update previous color information of an object that shows different color by using EM algorithm. As experiment results, we show that our proposed algorithm is an effective approach in tracking for a real object include an object having radical change of color.

  • PDF

Multiple Face Segmentation and Tracking Based on Robust Hausdorff Distance Matching

  • Park, Chang-Woo;Kim, Young-Ouk;Sung, Ha-Gyeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.632-635
    • /
    • 2003
  • This paper describes a system fur tracking multiple faces in an input video sequence using facial convex hull based facial segmentation and robust hausdorff distance. The algorithm adapts skin color reference map in YCbCr color space and hair color reference map in RGB color space for classifying face region. Then, we obtain an initial face model with preprocessing and convex hull. For tracking, this algorithm computes displacement of the point set between frames using a robust hausdorff distance and the best possible displacement is selected. Finally, the initial face model is updated using the displacement. We provide an example to illustrate the proposed tracking algorithm, which efficiently tracks rotating and zooming faces as well as existing multiple faces in video sequences obtained from CCD camera.

  • PDF

Multiple Face Segmentation and Tracking Based on Robust Hausdorff Distance Matching

  • Park, Chang-Woo;Kim, Young-Ouk;Sung, Ha-Gyeong;Park, Mignon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.87-92
    • /
    • 2003
  • This paper describes a system for tracking multiple faces in an input video sequence using facial convex hull based facial segmentation and robust hausdorff distance. The algorithm adapts skin color reference map in YCbCr color space and hair color reference map in RGB color space for classifying face region. Then, we obtain an initial face model with preprocessing and convex hull. For tracking, this algorithm computes displacement of the point set between frames using a robust hausdorff distance and the best possible displacement is selected. Finally, the initial face model is updated using the displacement. We provide an example to illustrate the proposed tracking algorithm, which efficiently tracks rotating and zooming faces as well as existing multiple faces in video sequences obtained from CCD camera.

A Moving Object Tracking using Color and OpticalFlow Information (컬러 및 광류정보를 이용한 이동물체 추적)

  • Kim, Ju-Hyeon;Choi, Han-Go
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.4
    • /
    • pp.112-118
    • /
    • 2014
  • This paper deals with a color-based tracking of a moving object. Firstly, existing Camshift algorithm is complemented to improve the tracking weakness in the brightness change of an image which occurs in every frame. The complemented Camshift still shows unstable tracking when the objects with same color of the tracking object exist in background. In order to overcome the drawback this paper proposes the Camshift combined with KLT algorithm based on optical flow. The KLT algorithm performing the pixel-based feature tracking can complement the shortcoming of Camshift. Experimental results show that the merged tracking method makes up for the drawback of the Camshit algorithm and also improves tracking performance.

Visual Object Tracking Fusing CNN and Color Histogram based Tracker and Depth Estimation for Automatic Immersive Audio Mixing

  • Park, Sung-Jun;Islam, Md. Mahbubul;Baek, Joong-Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1121-1141
    • /
    • 2020
  • We propose a robust visual object tracking algorithm fusing a convolutional neural network tracker trained offline from a large number of video repositories and a color histogram based tracker to track objects for mixing immersive audio. Our algorithm addresses the problem of occlusion and large movements of the CNN based GOTURN generic object tracker. The key idea is the offline training of a binary classifier with the color histogram similarity values estimated via both trackers used in this method to opt appropriate tracker for target tracking and update both trackers with the predicted bounding box position of the target to continue tracking. Furthermore, a histogram similarity constraint is applied before updating the trackers to maximize the tracking accuracy. Finally, we compute the depth(z) of the target object by one of the prominent unsupervised monocular depth estimation algorithms to ensure the necessary 3D position of the tracked object to mix the immersive audio into that object. Our proposed algorithm demonstrates about 2% improved accuracy over the outperforming GOTURN algorithm in the existing VOT2014 tracking benchmark. Additionally, our tracker also works well to track multiple objects utilizing the concept of single object tracker but no demonstrations on any MOT benchmark.

Multiple Face Tracking System Using the Kalman Estimator Based on the Color SSD Algorithm (컬러 SSD 알고리즘 기반 칼만 예측기를 이용한 다수의 얼굴 검출 및 추적 시스템)

  • Kim, Byoung-Ki;Han, Young-Joon;Hahn, Hern-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.347-350
    • /
    • 2005
  • This paper proposes a new tracking algorithm using the Kalman estimator based color SSD algorithm. The Kalman estimator includes the color information as well as the position and size of the face region in its state vector, to take care of the variation of skin color while faces are moving. Based on the estimated face position, the color SSD algorithm finds the face matching with the one in the previous frame even when the color and size of the face region vary. The features of a face region extracted by the color SSD algorithm are used to update the state of the Kalman estimator.

  • PDF

Moving object Tracking Algorithm Based on Specific Color Detection (특정컬러정보 검출기반의 이동객체 탐색 알고리듬 구현)

  • Kim, Young-Bin;Ryu, Kwang-Ryol;Sclabassi, Robert J.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.277-280
    • /
    • 2007
  • A moving object tracking algorithm for image searching based on specific color detection is proposed in this paper. That is preprocessed for a luminance variation and noise cancellation to be robust system. The motion tracking is used the difference between input image and reference image in R, G, B each channels for a moving image. The proposed method is enhanced to 15% fast in comparison with the contour tracking method and the matching method, and stable.

  • PDF