• Title/Summary/Keyword: Color paper

Search Result 4,552, Processing Time 0.034 seconds

Visualization Technique of Spatial Statistical Data and System Implementation (공간 통계 데이터의 시각화 기술 및 시스템 개발)

  • Baek, Ryong;Hong, Gwang-Soo;Yang, Seung-Hoon;Kim, Byung-Gyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.12
    • /
    • pp.849-854
    • /
    • 2013
  • In this paper, a system technology-based algorithms and visualization is proposed to show a space data. Also the proposed system provides analysis function with combination of usual map and automatic document generation function to give a useful information for making an important decision based on spatial distributed data. In the proposed method, we employ the heat map analysis to present a suitable color distribution for 2 dimensional map data. The buffering analysis method is also used to define the spatial data access. By using the proposed system, spatial information in a variety of distribution will be easy to identify. Also, if we make a use of automatic document generation function in the proposed algorithm, a lot of time and cost savings are expected to make electronic document which representation of spatial information is required.

Vision-based Localization for AUVs using Weighted Template Matching in a Structured Environment (구조화된 환경에서의 가중치 템플릿 매칭을 이용한 자율 수중 로봇의 비전 기반 위치 인식)

  • Kim, Donghoon;Lee, Donghwa;Myung, Hyun;Choi, Hyun-Taek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.667-675
    • /
    • 2013
  • This paper presents vision-based techniques for underwater landmark detection, map-based localization, and SLAM (Simultaneous Localization and Mapping) in structured underwater environments. A variety of underwater tasks require an underwater robot to be able to successfully perform autonomous navigation, but the available sensors for accurate localization are limited. A vision sensor among the available sensors is very useful for performing short range tasks, in spite of harsh underwater conditions including low visibility, noise, and large areas of featureless topography. To overcome these problems and to a utilize vision sensor for underwater localization, we propose a novel vision-based object detection technique to be applied to MCL (Monte Carlo Localization) and EKF (Extended Kalman Filter)-based SLAM algorithms. In the image processing step, a weighted correlation coefficient-based template matching and color-based image segmentation method are proposed to improve the conventional approach. In the localization step, in order to apply the landmark detection results to MCL and EKF-SLAM, dead-reckoning information and landmark detection results are used for prediction and update phases, respectively. The performance of the proposed technique is evaluated by experiments with an underwater robot platform in an indoor water tank and the results are discussed.

Segmentation of Target Objects Based on Feature Clustering in Stereoscopic Images (입체영상에서 특징의 군집화를 통한 대상객체 분할)

  • Jang, Seok-Woo;Choi, Hyun-Jun;Huh, Moon-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4807-4813
    • /
    • 2012
  • Since the existing methods of segmenting target objects from various images mainly use 2-dimensional features, they have several constraints due to the shortage of 3-dimensional information. In this paper, we therefore propose a new method of accurately segmenting target objects from three dimensional stereoscopic images using 2D and 3D feature clustering. The suggested method first estimates depth features from stereo images by using a stereo matching technique, which represent the distance between a camera and an object from left and right images. It then eliminates background areas and detects foreground areas, namely, target objects by effectively clustering depth and color features. To verify the performance of the proposed method, we have applied our approach to various stereoscopic images and found that it can accurately detect target objects compared to other existing 2-dimensional methods.

Design of a lighting system for PCB visual pattern inspection (인쇄회로기판의 패턴 검사용 조명장치 설계)

  • Na, Hyun-Chan;Rho, Byung-Ok;Ryu, Yung-Kee;Cho, Hyung-Suck
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 1997
  • Austomated visual inspection(AVI) capability has become an important key component in the automated manufacturing system. In such a visual inspection system an intensity(or color) image of a scene is quickly affected by optical property of objects, condition and roughness of surface, lens and filters, image sensor property and lighting system. In particular, the lighting system disign is the most important factor, since it affects overall performance of the visual system. For fast and cheap automated visual inspection system it is important to obtain the good image quality which results from careful attention to the design of the lighting system. In this paper, the lighting subsystem of AVI system is analysed for the inspection of printed circuit board(PCB) patterns. The spectral reflectance of materials, which are composed of PCB, is measured for choosing the light source. The reflection property is theoretically obtained by a reflection model and also obtained by experiments which measure intensity with varying the viewing direction of image sensor and the lighting direction of illuminator. The illumination uniformity of a ring-type illuminator. The lighting system is designed based upon the experimental results and theoretial analysis.

Development of a Subsurface Exploration Analysis System Using a Clustering Technique on Bore-Hole Information (시추공 정보의 클러스터링 기법을 이용한 지반분석시스템의 개발)

  • 이규병;김유성;조우석;김영진
    • Spatial Information Research
    • /
    • v.8 no.2
    • /
    • pp.301-315
    • /
    • 2000
  • Every, year, a great amount of site investigation data is collected on site to obtain sufficient conditions. Investigation of subsurface conditions is prerequisite to the design and construction of structures and also provides information on ground properties such as geologic formation and types of soil. This data set, which portrays real representation of ground conditions over the existing geologic and soil maps, could be further utilized for analyzing the subsurface conditions. It is therefore necessary to develope a subsurface exploration analysis system which is able to extract the valuable information from the heterogeneous, non-normalized subsurface investigation data. This paper presents the overall design scheme and implementation on a subsurface exploration analysis system. The analysis system employs one of data set such as bore-hole data. The clustering technique employed in the developed system makes a large volume of bore-hole data into several groups in terms of ground formation and geographical vicinity. As a result of clustering, each group or cluster consists of bore-hole data with similar characteristics of subsurface and geographical vicinity. In addition, each clustered data is displayed on digital topographical map with different color so that the analysis of site investigation data could be performed in more sensible ways.

  • PDF

Design and Implementation of Immersive Media System Based on Dynamic Projection Mapping and Gesture Recognition (동적 프로젝션 맵핑과 제스처 인식 기반의 실감 미디어 시스템 설계 및 구현)

  • Kim, Sang Joon;Koh, You Jon;Choi, Yoo-Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.3
    • /
    • pp.109-122
    • /
    • 2020
  • In recent, projection mapping, which has attracted high attention in the field of realistic media, is regarded as a technology to increase the users' immersion. However, most existing methods perform projection mapping on static objects. In this paper, we developed a technology to track the movements of users and dynamically map the media contents to the users' bodies. The projected media content is built by predefined gestures just using the user's bare hands without the special devices. An interactive immersive media system has been implemented by integrating these dynamic projection mapping technologies and gesture-based drawing technologies. The proposed realistic media system recognizes the movements and open / closed states of the user 's hands, selects the functions necessary to draw a picture. The users can freely draw the picture by changing the color of the brush using the colors of any real objects. In addition, the user's drawing is dynamically projected on the user's body, allowing the user to design and wear his t-shirt in real-time.

Texture mapping of 3D game graphics - characteristics of hand painted texture (3D게임그래픽의 텍스쳐 매핑-손맵의 특징)

  • Sohn, Jong-Nam;Han, Tae-Woo
    • Journal of Digital Convergence
    • /
    • v.13 no.11
    • /
    • pp.331-336
    • /
    • 2015
  • The texture mapping used for the low-polygon models is one of the important workflows in the graphical representation of the 3D game. Only one hand painted texture is mapped on the surface of the 3D model and represents the color of the material and visual sense of touching by itself in that process. In the 3D game graphics, it is very important to visualize the textile sensation such as protruding and denting. It can be interpreted by the Gestalt Law to recognize a plane as a 3D sense of volume. Moreover, the concept of Affordance is necessary to recognize and perceive the textile sensation. It means visual recognizing of that relationship in the learning process. In this paper, The questionnaire survey targeting 3D game graphic designers is carried out. By analyzing the survey results, we suggest the important characteristic in the process of making hand painted texture.

Object VR-based Virtual Textile Wearing System Using Textile Texture Mapping (직물 텍스쳐 매핑을 이용한 객체 VR 기반 가상 직물 착용 시스템)

  • Kwak, No-Yoon
    • Journal of Digital Convergence
    • /
    • v.10 no.8
    • /
    • pp.239-247
    • /
    • 2012
  • This paper is related to an Object VR-based virtual textile wearing system carrying out textile texture mapping based on viewpoint vector estimation and intensity difference map. The proposed system is characterized as capable of virtually wearing a new textile pattern selected by the user to the clothing shape section segmented from multi-view 2D images of clothes model for Object VR(Object Virtual Reality), and three-dimensionally viewing its virtual wearing appearance at multi-view points of the object. Regardless of color or intensity of model clothes, the proposed system is possible to virtually change the textile pattern with holding the properties of the selected clothing shape section, and also to quickly and easily simulate, compare, and select multiple textile pattern combinations for individual styles or entire outfits. The proposed system can provide higher practicality and easy-to-use interface, as it makes real-time processing possible in various digital environment, and creates comparatively natural and realistic virtual wearing styles, and also makes semi-automatic processing possible to reduce the manual works.

A Complementary Quadtree in Consideration for Gradient of Homogeneous Regions (동질 영역의 기울기를 고려한 상보 쿼드트리)

  • Kim, Sin-Jin;Lee, Jong-Yeop;Kim, Yeong-Mo;Go, Gwang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.3
    • /
    • pp.36-41
    • /
    • 2002
  • Generally, cartoon images are simple and involve a small number of colors and often include large homogeneous regions with same color or gradient. In this paper, effective compression method for complementary quadtree was suggested for cartoon images, by using those properties. And with progressive transmission, this method involves a progressive increase in the image resolution at the receiver from a lower to a higher resolution during the transmission of data. This is an effective way of using a limited transmission channel, because, after estimating the value of the data in the early transmission period, a decision can be made whether or not to proceed with the transmission of the remaining part. Since the proposed method is lossless and involves progressive transmission, it was compared with progressive PNG and progressive GIF, which had same functions.

2D Spatial-Map Construction for Workers Identification and Avoidance of AGV (AGV의 작업자 식별 및 회피를 위한 2D 공간 지도 구성)

  • Ko, Jung-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.347-352
    • /
    • 2012
  • In this paper, an 2D spatial-map construction for workers identification and avoidance of AGV using the detection scheme of the spatial coordinates based on stereo camera is proposed. In the proposed system, face area of a moving person is detected from a left image among the stereo image pairs by using the YCbCr color model and its center coordinates are computed by using the centroid method and then using these data, the stereo camera embedded on the mobile robot can be controlled for tracking the moving target in real-time. Moreover, using the disparity map obtained from the left and right images captured by the tracking-controlled stereo camera system and the perspective transformation between a 3-D scene and an image plane, depth map can be detected. From some experiments on AGV driving with 240 frames of the stereo images, it is analyzed that error ratio between the calculated and measured values of the worker's width is found to be very low value of 2.19% and 1.52% on average.