• Title/Summary/Keyword: Color machine vision

Search Result 71, Processing Time 0.029 seconds

POSITION RECOGNITION AND QUALITY EVALUATION OF TOBACCO LEAVES VIA COLOR COMPUTER VISION

  • Lee, C. H.;H. Hwang
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.569-577
    • /
    • 2000
  • The position of tobacco leaves is affluence to the quality. To evaluate its quality, sample leaves was collected according to the position of attachment. In Korea, the position was divided into four classes such as high, middle, low and inside positioned leaves. Until now, the grade of standard sample was determined by human expert from korea ginseng and tobacco company. Many research were done by the chemical and spectrum analysis using NIR and computer vision. The grade of tobacco leaves mainly classified into 5 grades according to the attached position and its chemical composition. In high and low positioned leaves shows a low level grade under grade 3. Generally, inside and medium positioned leaf has a high level grade. This is the basic research to develop a real time tobacco leaves grading system combined with portable NIR spectrum analysis system. However, this research just deals with position recognition and grading using the color machine vision. The RGB color information was converted to HSI image format and the sample was all investigated using the bundle of tobacco leaves. Quality grade and position recognition was performed through well known general error back propagation neural network. Finally, the relationship about attached leaf position and its grade was analyzed.

  • PDF

Development of Automatic Sorting System for Green pepper Using Machine Vision (기계시각에 의한 풋고추 자동 선별시스템 개발)

  • Cho, N.H.;Chang, D.I.;Lee, S.H.;Hwang, H.;Lee, Y.H.;Park, J.R.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.6 s.119
    • /
    • pp.514-523
    • /
    • 2006
  • Production of green pepper has been increased due to customer's preference and a projected ten-year boom in the industry in Korea. This study was carried out to develop an automatic grading and sorting system for green pepper using machine vision. The system consisted of a feeding mechanism, segregation section, an image inspection chamber, image processing section, system control section, grading section, and discharging section. Green peppers were separated and transported using a bowl feeder with a vibrator and a belt conveyor, respectively. Images were taken using color CCD cameras and a color frame grabber. An on-line grading algorithm was developed using Visual C/C++. The green peppers could be graded into four classes by activating air nozzles located at the discharging section. Length and curvature of each green pepper were measured while removing a stem of it. The first derivative of thickness profile was used to remove a stem area of segmented image of the pepper. While pepper is moving at 0.45 m/s, the accuracy of grading sorting for large, medium and small pepper are 86.0%, 81.3% and 90.6% respectively. Sorting performance was 121 kg/hour, and about five times better than manual sorting. The developed system was also economically feasible to grade and sort green peppers showing the cost about 40% lower than that of manual operations.

Machine Vision Applications in Automated Scrap-separating Research (머신비젼 시스템을 이용(利用)한 스크랩 자동선별(自動選別) 연구(硏究))

  • Kim, Chan-Wook;Kim, Hang-Goo
    • Resources Recycling
    • /
    • v.15 no.6 s.74
    • /
    • pp.3-9
    • /
    • 2006
  • In this study, a machine vision system using a color recognition method has been designed and developed to automatically sort out specified materials from a mixture, especially Cu and other non-ferrous metal scraps from a mixture of iron scraps. The system consists of a CCD camera, light sources, a frame grabber, conveying devices and an air-nozzle ejector, and is program-controlled by a image processing algorithms. The ejectors designed to be operated by an I/O interface communication with a hardware controller. In the functional tests of the system, its efficiency in the separation of Cu scraps from its mixture with Fe ones reaches to 90% or more at a conveying speed of 15m/min, and thus the system is proven to be excellent in terms of the separating efficiency. Therefore, it is expected that the system can be commercialized in the industry of shredder makers if an automated sorting system of high speed is realized.

Machine vision applications in automated scrap-separating research (머신비젼 시스템을 이용(利用)한 스크랩 자동선별(自動選別) 연구(硏究))

  • Kim, Chan-Wook;Lee, Seung-Hyun;Kim, Hang-gu
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.05a
    • /
    • pp.57-61
    • /
    • 2005
  • In this study, the machine vision system for inspection using color recognition method have been designed and developed to automatically sort out a specified material such as Cu scraps or other non-ferrous metal scraps mixed in Fe scraps. The system consists of a CCD camera, light sources, a frame grabber, conveying devices and an air nozzled ejector, and is program-controlled by a image processing algorithm. The ejector is designed to be operated by an I/O interface communication with a hardware controller. The sorting examination results show that the efficiency of separating Cu scraps from the Fe scraps mixed with Cu scraps is around 90 % at the conveying speed of 15 m/min. and the system is proven to be excellent in terms of its efficiency. Therefore, it is expected that the system can be commercialized in shredder firms, if the high-speed automated sorting system will be realized.

  • PDF

A Video Traffic Flow Detection System Based on Machine Vision

  • Wang, Xin-Xin;Zhao, Xiao-Ming;Shen, Yu
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1218-1230
    • /
    • 2019
  • This study proposes a novel video traffic flow detection method based on machine vision technology. The three-frame difference method, which is one kind of a motion evaluation method, is used to establish initial background image, and then a statistical scoring strategy is chosen to update background image in real time. Finally, the background difference method is used for detecting the moving objects. Meanwhile, a simple but effective shadow elimination method is introduced to improve the accuracy of the detection for moving objects. Furthermore, the study also proposes a vehicle matching and tracking strategy by combining characteristics, such as vehicle's location information, color information and fractal dimension information. Experimental results show that this detection method could quickly and effectively detect various traffic flow parameters, laying a solid foundation for enhancing the degree of automation for traffic management.

Identification via Retinal Vessels Combining LBP and HOG

  • Ali Noori;Esmaeil Kheirkhah
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.187-192
    • /
    • 2023
  • With development of information technology and necessity for high security, using different identification methods has become very important. Each biometric feature has its own advantages and disadvantages and choosing each of them depends on our usage. Retinal scanning is a bio scale method for identification. The retina is composed of vessels and optical disk. The vessels distribution pattern is one the remarkable retinal identification methods. In this paper, a new approach is presented for identification via retinal images using LBP and hog methods. In the proposed method, it will be tried to separate the retinal vessels accurately via machine vision techniques which will have good sustainability in rotation and size change. HOG-based or LBP-based methods or their combination can be used for separation and also HSV color space can be used too. Having extracted the features, the similarity criteria can be used for identification. The implementation of proposed method and its comparison with one of the newly-presented methods in this area shows better performance of the proposed method.

Terrain Cover Classification Technique Based on Support Vector Machine (Support Vector Machine 기반 지형분류 기법)

  • Sung, Gi-Yeul;Park, Joon-Sung;Lyou, Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.55-59
    • /
    • 2008
  • For effective mobility control of UGV(unmanned ground vehicle), the terrain cover classification is an important component as well as terrain geometry recognition and obstacle detection. The vision based terrain cover classification algorithm consists of pre-processing, feature extraction, classification and post-processing. In this paper, we present a method to classify terrain covers based on the color and texture information. The color space conversion is performed for the pre-processing, the wavelet transform is applied for feature extraction, and the SVM(support vector machine) is applied for the classifier. Experimental results show that the proposed algorithm has a promising classification performance.

Study on the upgrade reliability of inkjet droplet measurement using machine vision (머신비젼을 이용한 잉크젯 드랍 측정 시스템의 신뢰성 향상에 대한 연구)

  • Kim, Dong-Eok;Lee, Jun-Ho;Jeong, Seong-Uk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.07a
    • /
    • pp.365-366
    • /
    • 2007
  • Micro jetting drop inspection system is essential to measuring micro drop volume. Measuring pico-liter drop volume is useful for new LCD color filter product process that is based on inkjet printing technology. To upgrade the reliability in drop measurement system, we use the auto focusing & multi drop reiteration & blurring average algorism. First of all we used standard mark for gage R&R in the vision system. Finding the most suitable threshold for multi blurring drop, is the main key of this research. Sensitivity of vision system is a standard in measuring the upgrade system level. So, suitable threshold can upgrade the performance of jetting drop inspection system.

  • PDF

Plant Species Identification based on Plant Leaf Using Computer Vision and Machine Learning Techniques

  • Kaur, Surleen;Kaur, Prabhpreet
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.49-60
    • /
    • 2019
  • Plants are very crucial for life on Earth. There is a wide variety of plant species available, and the number is increasing every year. Species knowledge is a necessity of various groups of society like foresters, farmers, environmentalists, educators for different work areas. This makes species identification an interdisciplinary interest. This, however, requires expert knowledge and becomes a tedious and challenging task for the non-experts who have very little or no knowledge of the typical botanical terms. However, the advancements in the fields of machine learning and computer vision can help make this task comparatively easier. There is still not a system so developed that can identify all the plant species, but some efforts have been made. In this study, we also have made such an attempt. Plant identification usually involves four steps, i.e. image acquisition, pre-processing, feature extraction, and classification. In this study, images from Swedish leaf dataset have been used, which contains 1,125 images of 15 different species. This is followed by pre-processing using Gaussian filtering mechanism and then texture and color features have been extracted. Finally, classification has been done using Multiclass-support vector machine, which achieved accuracy of nearly 93.26%, which we aim to enhance further.

Multi-Channel Vision System for On-Line Quantification of Appearance Quality Factors of Apple

  • Lee, Soo Hee;Noh, Sang Ha
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.2
    • /
    • pp.106-110
    • /
    • 2000
  • An integrated on-line inspection system was constructed with seven cameras, half mirrors to split images. 720 nm and 970 nm band pass filters, illumination chamber having several tungsten-halogen lamps, one main computer, one color frame grabber, two 4-channel multiplexors, and flat plate conveyer, etc. A total of seven images, that is, one color image form the top of an apple and two B/W images from each side (top, right and left) could be captured and displayed on a computer monitor through the multiplexor. One of the two B/W images captured from each side is 720nm filtered image and the other is 970 nm. With this system an on-line grading software was developed to evaluate appearance quality. On-line test results with Fuji apples that were manually fed on the conveyer showed that grading accuracies of the color, defect and shape were 95.3%, 86% and 88.6%, respectively. Grading time was 0.35 second per apple on an average. Therefore, this on-line grading system could be used for inspection of the final products produced from an apple sorting system.

  • PDF