• Title/Summary/Keyword: Color image detection

Search Result 721, Processing Time 0.033 seconds

Fire Detection Algorithm Based On Motion Information and Color Information Analysis (움직임 정보와 칼라정보 분석을 통한 화재검출 알고리즘)

  • Choi, Hong-seok;Moon, Kwang-seok;Kim, Jong-nam;Park, Seung-seob
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.180-188
    • /
    • 2016
  • In this paper, we propose a fire detection algorithm based on motion information and color information analysis. Conventional fire detection algorithms have as main problem the difficulty to detect fire due to external light, intensity, background image complexity, and little fire diffusion. So we propose a fire detection algorithm that accurate and fast. First, it analyzes the motion information in video data and then set the first candidate. Second, it determines this domain after analyzing the color and the domain. This algorithm assures a fast fire detection and a high accuracy compared with conventional fire detection algorithms. Our algorithm will be useful to real-time fire detection in real world.

A New Face Detection Method by Hierarchical Color Histogram Analysis

  • Kwon, Ji-Woong;Park, Myoung-Soo;Kim, Mun-Hyuk;Park, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.138.3-138
    • /
    • 2001
  • Because face has non-rigid structure and is influenced by illumination, we need robust face detection algorithm with the variations of external environments (orientation of lighting and face, complex background, etc.). In this paper we develop a new face detection algorithm to achieve robustness. First we transform RGB color into other color space, in which we can reduce lighting effect much. Second, hierarchical image segmentation technique is used for dividing a image into homogeneous regions. This process uses not only color information, but also spatial information. One of them is used in segmentation by histogram analysis, the other is used in segmentation by grouping. And we can select face region among the homogeneous regions by using facial features.

  • PDF

Flame Color, Spatial and Temporal Characteristic Analysis of Color Fire Images (컬러 화재영상의 화염 색상 및 시공간적 특성 분석)

  • Hwang, Jun-Cheol;Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.41-45
    • /
    • 2011
  • This paper presents a fire detection criterion based on flame color, spatial and temporal characteristic analysis of color fire images. To propose the criterion, Firstly the fire candidate regions were selected by using analyzed Cr and Y threshold value, and then texture analysis of candidate regions was performed by using DCT. Finally variation of Y values of these regions was calculated for temporal analysis. The proposed fire detection criterion was simulated by using fifteen test images and practicality was verified.

Mean area detection in the image using OpenCV (OpenCV를 이용한 영상에서의 특정 영역 검출)

  • Jo, Su-jang;Kwon, Se-hyun;Hwang, Seung-jin;Hwang, Ho-yeon;Yoo, Ji-yeon;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.182-183
    • /
    • 2018
  • Most of the photographs or images of the present age have pixels of various colors that can not be recognized by human eyes. For a specific purpose, pixel-based image processing is inevitable rather than passive investigation using the human eye in order to find areas of color similar to the target color. In this paper, we try to detect all the pixels of the same color or the same color in the image. We will also try to find pixels within the error range that are similar in color to the color we are looking for.

  • PDF

Role of linked color imaging for upper gastrointestinal disease: present and future

  • Sang Pyo Lee
    • Clinical Endoscopy
    • /
    • v.56 no.5
    • /
    • pp.546-552
    • /
    • 2023
  • Techniques for upper gastrointestinal endoscopy are advancing to facilitate lesion detection and improve prognosis. However, most early tumors in the upper gastrointestinal tract exhibit subtle color changes or morphological features that are difficult to detect using white light imaging. Linked color imaging (LCI) has been developed to overcome these shortcomings; it expands or reduces color information to clarify color differences, thereby facilitating the detection and observation of lesions. This article summarizes the characteristics of LCI and advances in LCI-related research in the upper gastrointestinal tract field.

Change Area Detection using Color and Edge Gradient Covariance Features (색상과 에지 공분산 특징을 이용한 변화영역 검출)

  • Kim, Dong-Keun;Hwang, Chi-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.717-724
    • /
    • 2016
  • This paper proposes a change detection method based on the covariance matrices of color and edge gradient in a color video. The YCbCr color format was used instead of RGB. The color covariance matrix was calculated from the CbCr-channels and the edge gradient covariance matrix was calculated from the Y-channels. The covariance matrices were effectively calculated at each pixel by calculating the sum, squared sum, and sum of two values' multiplication of a rectangle area using the integral images from a background image. The background image was updated by a running the average between the background image and a current frame. The change areas in a current frame image against the background were detected using the Mahalanobis distance, which is a measure of the statistical distance using covariance matrices. The experimental results of an expressway color video showed that the proposed approach can effectively detect change regions for color and edge gradients against the background.

Preprocessing Technique for Lane Detection Using Image Clustering and HSV Color Model (영상 클러스터링과 HSV 컬러 모델을 이용한 차선 검출 전처리 기법)

  • Choi, Na-Rae;Choi, Sang-Il
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.144-152
    • /
    • 2017
  • Among the technologies for implementing autonomous vehicles, advanced driver assistance system is a key technology to support driver's safe driving. In the technology using the vision sensor having a high utility, various preprocessing methods are used prior to feature extraction for lane detection. However, in the existing methods, the unnecessary lane candidates such as cars, lawns, and road separator in the road area are false positive. In addition, there are cases where the lane candidate itself can not be extracted in the area under the overpass, the lane within the dark shadow, the center lane of yellow, and weak lane. In this paper, we propose an efficient preprocessing method using k-means clustering for image division and the HSV color model. When the proposed preprocessing method is applied, the true positive region is maximally maintained during the lane detection and many false positive regions are removed.

Adaptive Skin Color Segmentation in a Single Image using Image Feedback (영상 피드백을 이용한 단일 영상에서의 적응적 피부색 검출)

  • Do, Jun-Hyeong;Kim, Keun-Ho;Kim, Jong-Yeol
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.112-118
    • /
    • 2009
  • Skin color segmentation techniques have been widely utilized for face/hand detection and tracking in many applications such as a diagnosis system using facial information, human-robot interaction, an image retrieval system. In case of a video image, it is common that the skin color model for a target is updated every frame for the robust target tracking against illumination change. As for a single image, however, most of studies employ a fixed skin color model which may result in low detection rate or high false positive errors. In this paper, we propose a novel method for effective skin color segmentation in a single image, which modifies the conditions for skin color segmentation iteratively by the image feedback of segmented skin color region in a given image.

Content Based Image Retrieval Based on A Novel Image Block Technique Combining Color and Edge Features

  • Kwon, Goo-Rak;Haoming, Zou;Park, Sei-Seung
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.185-190
    • /
    • 2010
  • In this paper we propose the CBIR algorithm which is based on a novel image block method that combined both color and edge feature. The main drawback of global histogram representation is dependent of the color without spatial or shape information, a new image block method that divided the image to 8 related blocks which contained more information of the image is utilized to extract image feature. Based on these 8 blocks, histogram equalization and edge detection techniques are also used for image retrieval. The experimental results show that the proposed image block method has better ability of characterizing the image contents than traditional block method and can perform the retrieval system efficiently.

The Robust Skin Color Correction Method in Distorted Saturation by the Lighting (조명에 의한 채도 왜곡에 강건한 피부 색상 보정 방법)

  • Hwang, Dae-Dong;Lee, Keunsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1414-1419
    • /
    • 2015
  • A method for detecting a skin region on the image is generally used to detect the color information. However, If saturation lowered, skin detection is difficult because hue information of the pixels is lost. So in this paper, we propose a method of correcting color of lower saturation of skin region images by the lighting. Color correction process of this method is saturation image acquisition and low-saturation region classification, segmentation, and the saturation of the split in the low saturation region extraction and color values, the color correction sequence. This method extracts the low saturation regions in the image and extract the color and saturation in the region and the surrounding region to produce a color similar to the original color. Therefore, the method of extracting the low saturation region should be correctly preceding. Because more accurate segmentation in the process of obtaining a low saturation regions, we use a multi-threshold method proposed Otsu in Hue values of the HSV color space, and create a binary image. Our experimental results for 170 portrait images show a possibility that the proposed method could be used efficiently preprocessing of skin color detection method, because the detection result of proposed method is 5.8% higher than not used it.