• Title/Summary/Keyword: Color image detection

Search Result 721, Processing Time 0.024 seconds

The Object Image Detection Method using statistical properties (통계적 특성에 의한 객체 영상 검출방안)

  • Kim, Ji-hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.7
    • /
    • pp.956-962
    • /
    • 2018
  • As the study of the object feature detection from image, we explain methods to identify the species of the tree in forest using the picture taken from dron. Generally there are three kinds of methods, which are GLCM (Gray Level Co-occurrence Matrix) and Gabor filters, in order to extract the object features. We proposed the object extraction method using the statistical properties of trees in this research because of the similarity of the leaves. After we extract the sample images from the original images, we detect the objects using cross correlation techniques between the original image and sample images. Through this experiment, we realized the mean value and standard deviation of the sample images is very important factor to identify the object. The analysis of the color component of the RGB model and HSV model is also used to identify the object.

A method of improving the quality of 3D images acquired from RGB-depth camera (깊이 영상 카메라로부터 획득된 3D 영상의 품질 향상 방법)

  • Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.637-644
    • /
    • 2021
  • In general, in the fields of computer vision, robotics, and augmented reality, the importance of 3D space and 3D object detection and recognition technology has emerged. In particular, since it is possible to acquire RGB images and depth images in real time through an image sensor using Microsoft Kinect method, many changes have been made to object detection, tracking and recognition studies. In this paper, we propose a method to improve the quality of 3D reconstructed images by processing images acquired through a depth-based (RGB-Depth) camera on a multi-view camera system. In this paper, a method of removing noise outside an object by applying a mask acquired from a color image and a method of applying a combined filtering operation to obtain the difference in depth information between pixels inside the object is proposed. Through each experiment result, it was confirmed that the proposed method can effectively remove noise and improve the quality of 3D reconstructed image.

Skin Region Detection Using Histogram Approximation Based Mean Shift Algorithm (Mean Shift 알고리즘 기반의 히스토그램 근사화를 이용한 피부 영역 검출)

  • Byun, Ki-Won;Joo, Jae-Heum;Nam, Ki-Gon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.21-29
    • /
    • 2011
  • At existing skin detection methods using skin color information defined based on the prior knowldege, threshold value to be used at the stage of dividing the backround and the skin region was decided on a subjective point of view through experiments. Also, threshold value was selected in a passive manner according to their background and illumination environments in these existing methods. These existing methods displayed a drawback in that their performance was fully influenced by the threshold value estimated through repetitive experiments. To overcome the drawback of existing methods, this paper propose a skin region detection method using a histogram approximation based on the mean shift algorithm. The proposed method is to divide the background region and the skin region by using the mean shift method at the histogram of the skin-map of the input image generated by the comparison of the similarity with the standard skin color at the CbCr color space and actively finding the maximum value converged by brightness level. Since the histogram has a form of discontinuous function accumulated according to the brightness value of the pixel, it gets approximated as a Gaussian Mixture Model (GMM) using the Bezier Curve method. Thus, the proposed method detects the skin region by using the mean shift method and actively finding the maximum value which eventually becomes the dividing point, not by using the manually selected threshold value unlike other existing methods. This method detects the skin region high performance effectively through experiments.

Effects of Low-Level Visual Attributes on Threat Detection: Testing the Snake Detection Theory (저수준 시각적 특질이 위협 탐지에 미치는 효과: 뱀 탐지 이론의 검증)

  • Kim, Taehoon;Kwon, Dasom;Yi, Do-Joon
    • Science of Emotion and Sensibility
    • /
    • v.23 no.3
    • /
    • pp.47-62
    • /
    • 2020
  • The snake detection theory posits that, due to competition with snakes, the primate visual system has been evolved to detect camouflaged snakes. Specifically, one of its hypotheses states that the subcortical visual pathway mainly consisting of koniocellular cells enables humans to automatically detect the threat of snakes without consuming mental resources. Here we tested the hypothesis by comparing human participants' responses to snakes with those to fearful faces and flowers. Participants viewed either original images or converted ones, which lacked the differences in color, luminance, contrast, and spatial frequency energies between categories. While participants in Experiment 1 produced valence and arousal ratings to each image, those in Experiment 2 detected target images in the breaking continuous flash suppression (bCFS) paradigm. As a result, visual factors influenced the responses to snakes most strongly. After minimizing visual differences, snakes were rated as being less negative and less arousing, and detected more slowly from suppression. In contrast, the images of the other categories were less affected by image conversion. In particular, fearful faces were rated as greater threats and detected more quickly than other categories. In addition, for snakes, changes in arousal ratings and those in bCFS response times were negatively correlated: Those snake images, the arousal ratings of which decreased, produced increased detection latency. These findings suggest that the influence of snakes on human responses to threat is limited relative to fearful faces, and that detection responses in bCFS share common processing mechanisms with conscious ratings. In conclusion, the current study calls into question the assumption that snake detection in humans is a product of unconscious subcortical visual processing.

Elliptical Clustering with Incremental Growth and its Application to Skin Color Region Segmentation (점증적으로 증가하는 타원형 군집화 : 피부색 영역 검출에의 적용)

  • Lee Kyoung-Mi
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.9
    • /
    • pp.1161-1170
    • /
    • 2004
  • This paper proposes to segment skin color areas using a clustering algorithm. Most of previously proposed clustering algorithms have some difficulties, since they generally detect hyperspherical clusters, run in a batch mode, and predefine a number of clusters. In this paper, we use a well-known elliptical clustering algorithm, an EM algorithm, and modify it to learn on-line and find automatically the number of clusters, called to an EAM algorithm. The effectiveness of the EAM algorithm is demonstrated on a task of skin color region segmentation. Experimental results present the EAM algorithm automatically finds a right number of clusters in a given image without any information on the number. Comparing with the EM algorithm, we achieved better segmentation results with the EAM algorithm. Successful results were achieved to detect and segment skin color regions using a conditional probability on a region. Also, we applied to classify images with persons and got good classification results.

Content-based Shot Boundary Detection from MPEG Data using Region Flow and Color Information (영역 흐름 및 칼라 정보를 이용한 MPEG 데이타의 내용 기반 셧 경계 검출)

  • Kang, Hang-Bong
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.4
    • /
    • pp.402-411
    • /
    • 2000
  • It is an important step in video indexing and retrieval to detect shot boundaries on video data. Some approaches are proposed to detect shot changes by computing color histogram differences or the variances of DCT coefficients. However, these approaches do not consider the content or meaningful features in the image data which are useful in high level video processing. In particular, it is desirable to detect these features from compressed video data because this requires less processing overhead. In this paper, we propose a new method to detect shot boundaries from MPEG data using region flow and color information. First, we reconstruct DC images and compute region flow information and color histogram differences from HSV quantized images. Then, we compute the points at which region flow has discontinuities or color histogram differences are high. Finally, we decide those points as shot boundaries according to our proposed algorithm.

  • PDF

Flame and Smoke Detection Method for Early and Real-Time Detection of Tunnel Fire (터널 화재의 실시간 조기 탐지를 위한 화염 및 연기 검출 기법)

  • Lee, Byoung-Moo;Han, Dong-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.4
    • /
    • pp.59-70
    • /
    • 2008
  • In this paper, we proposed image processing technique for automatic real-time fire and smoke detection in tunnel environment. To avoid the large scale of damage of fire occurred in variety environments, it is purposeful to propose many studies to minimize and to discover the incident as fast as possible. But we need new specific algorithm because tunnel environment is quite different and it is difficult to apply previous fire detection algorithm to tunnel environment. Therefore, in this paper, we proposed specific algorithm which can be applied in tunnel environment. To minimize false detection in tunnel we used color and motion information. And it is possible to detect exact position in early stage with detection, test, verification procedures. In addition, by comparing properties of each algorithm throughout experiment, we have proved the validity and efficiency of proposed algorithm.

A Lane Detection and Departure Warning System Robust to Illumination Change and Road Surface Symbols (도로조명변화 및 노면표시에 강인한 차선 검출 및 이탈 경고 시스템)

  • Kim, Kwang Soo;Choi, Seung Wan;Kwak, Soo Yeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.6
    • /
    • pp.9-16
    • /
    • 2017
  • An Algorithm for Lane Detection and Lane Departure Warning for a Vehicle Driving on Roads is proposed in This Paper. Using Images Obtained from On-board Cameras for Lane Detection has Some Difficulties, e.g. the Increase of Fault Detection Ratio Due to Symbols on Roads, Missing Yellow Lanes in the Tunnel due to a Similar Color Lighting, Missing Some Lanes in Rainy Days Due to Low Intensity of Illumination, and so on. The Proposed Algorithm has been developed Focusing on Solving These Problems. It also has an Additional Function to Determine How much the Vehicle is leaning to any Side between The Lanes and, If Necessary, to Give a Warning to a Driver. Experiments Using an Image Database Built by Collecting with Vehicle On-board Blackbox in Six Different Situations have been conducted for Validation of the Proposed Algorithm. The Experimental Results show a High Performance of the Proposed Algorithm with Overall 97% Detection Success Ratio.

Facial Detection using Haar-like Feature and Bezier Curve (Haar-like와 베지어 곡선을 이용한 얼굴 성분 검출)

  • An, Kyeoung-Jun;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.11 no.9
    • /
    • pp.311-318
    • /
    • 2013
  • For face detection techniques, the correctness of detection decreases with different lightings and backgrounds so such requires new methods and techniques. This study has aimed to obtain data for reasoning human emotional information by analyzing the components of the eyes and mouth that are critical in expressing emotions. To do this, existing problems in detecting face are addressed and a detection method that has a high detection rate and fast processing speed good at detecting environmental elements is proposed. This method must detect a specific part (eyes and a mouth) by using Haar-like Feature technique with the application of an integral image. After which, binaries detect elements based on color information, dividing the face zone and skin zone. To generate correct shape, the shape of detected elements is generated by using a bezier curve-a curve generation algorithm. To evaluate the performance of the proposed method, an experiment was conducted by using data in the Face Recognition Homepage. The result showed that Haar-like technique and bezier curve method were able to detect face elements more elaborately.

Application of object detection algorithm for psychological analysis of children's drawing (아동 그림 심리분석을 위한 인공지능 기반 객체 탐지 알고리즘 응용)

  • Yim, Jiyeon;Lee, Seong-Oak;Kim, Kyoung-Pyo;Yu, Yonggyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.5
    • /
    • pp.1-9
    • /
    • 2021
  • Children's drawings are widely used in the diagnosis of children's psychology as a means of expressing inner feelings. This paper proposes a children's drawings-based object detection algorithm applicable to children's psychology analysis. First, the sketch area from the picture was extracted and the data labeling process was also performed. Then, we trained and evaluated a Faster R-CNN based object detection model using the labeled datasets. Based on the detection results, information about the drawing's area, position, or color histogram is calculated to analyze primitive information about the drawings quickly and easily. The results of this paper show that Artificial Intelligence-based object detection algorithms were helpful in terms of psychological analysis using children's drawings.