• 제목/요약/키워드: Color image detection

검색결과 721건 처리시간 0.037초

컬러 정보와 오류역전파 신경망 알고리즘을 이용한 신차량 번호판 인식 (Recognition of a New Car Plate using Color Information and Error Back-propagation Neural Network Algorithms)

  • 이종희;김진환
    • 한국전자통신학회논문지
    • /
    • 제5권5호
    • /
    • pp.471-476
    • /
    • 2010
  • 본 논문에서는 RGB 컬러 정보와 오류 역전파 신경망 알고리즘을 이용한 신 차량 번호판 인식 방법을 제안한다. 먼저, 차량 영상에서 평균 Blue값을 이용하여 차량 영상을 보정하고 픽셀값의 차를 이용하여 Red 후보 영역과 Green 후보 영역으로 구분한 후 오류 역전파 알고리즘에 적용하여 최종 Green 영역을 찾는다. 둘째, 수평 및 수직 히스토그램의 빈도수를 이용하여 번호판 영역을 추출한다. 마지막으로, 윤곽선 추적 알고리즘을 적용하여 개별 코드들을 추출하고, 오류 역전파 알고리즘을 적용하여 개별 코드들을 인식한다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위하여 실제 비영업용 신 차량 번호판에 적용한 결과, 제안된 번호판 추출 방법이 기존의 HSI(Hue Saturation Intensity) 정보를 이용한 번호판 추출 방법보다 추출률이 개선되었고 제안된 차량 번호판 인식 방법이 효율적인 것을 확인하였다.

QFN 납땜 불량 검출을 위한 효율적인 검사 기법 (Efficient Mechanism for QFN Solder Defect Detection)

  • 김호중;조태훈
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.367-370
    • /
    • 2016
  • QFN(Quad Flat No-leads package)은 SMD(Surface Mount Device) 자재 중의 하나로써, 납땜을 하는 lead 부분이 따로 있지 않아 납땜에 대한 불량이 많이 발생하고 있다. 따라서 본 논문에서는 QFN의 납땜에 대한 불량을 검출하는 기법을 제안하고자 한다. 우리는 QFN의 납땜에 대한 불량 검출을 위해 기계학습 방법 중 하나인 Convolutional Neural Network(CNN)을 사용하였고, CNN에 학습을 시키기 위한 데이터로는 납땜을 한 QFN 컬러 다단 영상을 사용하였다. 이 영상은 3채널 컬러 영상으로, 이를 바로 CNN에 적용시켜 학습시키기에는 문제가 있다. 그렇기 때문에 3채널 컬러 영상을 세개의 1채널 Grayscale 영상(Red, Green, Blue)로 분리시켜 CNN에 적용시켰다. 이렇게 학습시킨 결과를 이용하여 QFN의 납땜에 대한 불량을 검출할 수 있었다. 현재는 Dicing과 Punch에 대해서만 테스트를 해보았기 때문에, 추후에 이를 제외한 다른 것들에 대한 추가적인 연구가 필요하다.

  • PDF

하천 제방의 영상 점군에서 식생 점 제거 필터링 기법 비교 분석 (Comparative Analysis of Filtering Techniques for Vegetation Points Removal from Photogrammetric Point Clouds at the Stream Levee)

  • 박희성;이두한
    • Ecology and Resilient Infrastructure
    • /
    • 제8권4호
    • /
    • pp.233-244
    • /
    • 2021
  • 본 연구에서는 식생이 무성한 제방의 이상유무 점검을 위한 지상 LiDAR(Light Detection And Ranging) 측량의 적용성을 검토하였다. 지상 LiDAR 측량으로 생성된 제방의 영상 점군 자료에 색상필터 및 형태필터를 적용하여 각 기법별 정확성과 특성을 평가하였다. 임진강 제방의 영상 점군 자료를 이용하여 CIVE, ExG, ExGR, ExR, MExG, NGRDI, VEG, VVI, ATIN, ISL 등의 10가 식생 제거 필터를 적용하였다. 결과에 의하면 정확성은 ISL, ATIN, ExR, NGRDI, ExGR, ExG, MExG, VVI, VEG, CIVE 등의 순서로 나타났다. 색상필터는 지반 구분에 한계를 보였으며 풀꽃을 지반으로 구분하기도 했다. 형태필터는 지반 구분 정확도가 우수하나 거석을 식생으로 인식하는 한계도 보였다. 전체적으로 형태필터가 우수하나 계산 시간에서 10 배 정도 소요되었다. 정확도와 속도 향상을 위해서 형태필터와 색상필터를 결합한 복합필터에 대한 연구가 필요하다.

컬러 프린터 영상의 모폴로지 특징과 지도 학습 모델 분류기를 활용한 위변조 지폐 판별 알고리즘 (Counterfeit Money Detection Algorithm based on Morphological Features of Color Printed Images and Supervised Learning Model Classifier)

  • 우귀희;이해연
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권12호
    • /
    • pp.889-898
    • /
    • 2013
  • 고성능 영상 장비의 대중화와 강력한 이미지 편집 소프트웨어의 출현으로 인해 지폐 및 유가 증권 등을 고품질로 위변조가 가능해졌다. 특히 컬러 레이저 프린터의 범용화로 인하여 화폐 위변조 범죄는 급격히 증가하고 있지만, 일반인이 이를 판별하는 비율은 낮은 수준이며 판별 기기도 고가이다. 본 연구에서는 범용 스캐너와 컴퓨터 시스템을 활용하여 화폐의 위변조를 탐지하기 위한 알고리즘을 제안하였다. 먼저 지폐의 인쇄방식과 다른 컬러 프린터의 인쇄 특징을 계산하기 위하여 모폴로지 기술과 명암도 동시 발생 행렬을 활용하였다. 그 후 계산된 특징들을 지도학습 모델 분류기에 적용하여 훈련을 시켰다. 이렇게 훈련된 분류기에 판별을 위한 지폐를 입력하고 위변조 여부에 대한 분석을 수행한다. 제안한 알고리즘의 성능을 분석하기 위하여 위변조 지폐의 판별률과 인쇄에 사용한 프린터의 판별률로 나누어 평가를 하였다. 또한 기존의 컬러 프린터 판별에 사용되었던 위너필터를 사용한 기술과 비교를 수행하였다. 그 결과 제안한 알고리즘이 위변조 지폐 식별에 있어서 91.92%, 위변조기기의 식별에 있어서 94.5% 이상 정확도를 보여 기존 컬러 프린터의 특징 추출 방법을 활용한 것보다 우수한 것으로 나타났다.

소형 DISPLAY 장치를 위한 비 메모리 피부 검출 알고리즘 및 HARDWARE 구현 (Memory-Free Skin-Detection Algorithm and Implementation of Hardware Design for Small-Sized Display Device)

  • 임정욱;송진근;하주영;강봉순
    • 한국정보통신학회논문지
    • /
    • 제11권8호
    • /
    • pp.1456-1464
    • /
    • 2007
  • 정보의 보안 및 감시, 관리에 대한 중요성의 증대와 공항, 항만 및 일반 기업에서의 얼굴 및 피부 인식을 이용한 패스워드 제어 시스템이 활용됨으로써 피부색 검출에 관한 연구가 지속적으로 이루어져 왔다. 뿐만 아니라 광범위 통신망을 이용한 화상 통신 및 전자 결재 등 그 적용 범위가 급속하게 확산됨에 따라 정확한 피부색 검출의 중요성이 그 무엇보다 커지고 있다. 본 논문에서는 인종별로 수집된 수백 개의 인물 이미지로부터 얻어진 정보를 사용해 피부색의 YCbCr을 파악하고 이 중 Cb와 Cr 정보만을 이용하여 피부 영역을 설정하였으며, 적응적인 피부 범위 설정을 통하여 그 피부 영역의 포함 여부에 따라 피부색을 검출하는 효율적이고 간단한 구조를 제안한다. 이것은 메모리를 사용하지 않는 ID 처리를 가능하게 함으로써 모바일 장비와 같은 상대적으로 작은 크기의 하드웨어나 시스템으로의 적용을 가능하게 하였다. 그리고 선택적 모드를 추가함으로써 더욱 향상된 피부 검출을 할 수 있을 뿐 만 아니라 복잡한 알고리즘을 사용하는 기존의 얼굴 인식 기술에 상응하는 결과를 보여준다.

의상 특징 기반의 동일인 식별 (Person Identification based on Clothing Feature)

  • 최유주;박선미;조위덕;김구진
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제16권1호
    • /
    • pp.1-7
    • /
    • 2010
  • 비전 기반의 감시 시스템에서 동일인의 식별은 매우 중요하다. 감시 시스템에서 주로 사용되는 CCTV 카메라의 영상은 상대적으로 낮은 해상도를 가지므로 얼굴 인식 기법을 이용하여 동일인을 식별하기는 어렵다. 본 논문에서는 CCTV 카메라 영상에서 의상 특징을 이용하여 동일인을 식별하는 알고리즘을 제안한다. 건물의 주출입구에서 출입자가 인증을 받을 때, 의상 특징이 데이터베이스에 저장된다. 그 후, 건물 내에서 촬영한 영상에 대해 배경 차감 및 피부색 발견 기법을 이용하여 의상 영역을 발견한다. 의상의 특징 벡터는 텍스처와 색상 특징을 이용하여 구성한다. 텍스처 특징은 지역적 에지 히스토그램을 이용하여 추출된다. 색상 특징은 색상 지도의 옥트리 기반 양자화(octree-based quantization)를 이용하여 추출된다. 건물 내의 촬영 영상이 주어질 때, 데이터베이스에서 의상 특징이 가장 유사한 사람을 발견함으로써 동일인을 식별하며, 의상 특징 벡터 간의 유사도 측정을 위해서는 유클리디안 거리(Euclidean distance)를 사용한다. 실험 결과, 얼굴인식 기법이 최대 43%의 성공률을 보인 데 비해, 의상 특징을 이용하여 80%의 성공률로 동일인을 식별하였다.

기계학습 기반의 신호등 검출과 형태적 정보를 이용한 인식 알고리즘 (Machine Learning based Traffic Light Detection and Recognition Algorithm using Shape Information)

  • 김정환;김선규;이태민;임용진;임준홍
    • 전기전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.46-52
    • /
    • 2018
  • 최근 자율 주행에 관한 다양한 연구가 진행되는 가운데 신호등 검출 및 신호 인식 알고리즘은 가장 중요한 요소 중의 하나이다. 기존에 알고리즘의 대부분은 색상을 기반으로 검출하고 인식한다. 이러한 방법은 영상의 각도, 거리, 주변 조도 환경 등에 의해 영향을 받아 신호등의 색상이 변화하여 인식률이 낮아진다는 단점이 있다. 본 논문에서는 이러한 문제점을 해결하기 위해서 Haar-like feature 및 SVM(Support Vector Machine) 기반의 신호등 검출과 제원 정보를 이용한 인식 알고리즘을 제안한다. 신호등 검출의 정확성을 향상시키기 위해서 Haar-like feature 이후에 SVM으로 검증한다. Haar-like feature와 SVM는 사전에 지도학습을 시행한다. 검출 과정 후에는 영역 분할을 통해서 신호만을 추출하여 점등 여부를 파악하고 최종적으로 인식하는 과정을 거친다. 제안한 알고리즘은 기존의 알고리즘과 달리 신호등의 형태학적 특성을 기반으로 검출하고 인식하므로 주변 환경으로부터의 영향에 강인하다는 장점이 있다. 블랙박스 영상으로 실험한 결과 기존의 색상 기반 알고리즘보다 신호의 인식률이 높았다.

설진 기기의 시스템 구성 및 진단 방법 개발 (Development of System Configuration and Diagnostic Methods for Tongue Diagnosis Instrument)

  • 김근호;도준형;유현희;김종열
    • 한국한의학연구원논문집
    • /
    • 제14권3호
    • /
    • pp.89-95
    • /
    • 2008
  • A tongue shows physiological and clinicopathological changes of inner organs. Visual inspection of a tongue is not only convenient but also non-invasive. To develop an automat ic tongue diagnosis system for an objective and standardized diagnosis, the separation of the tongue are a from a facial image and the detection of coatings, spots and cracks are inevitable but difficult since the colors of a tongue, lips, and skin in a mouth as well as those of tongue furs and body are similar. The propose d method includes preprocessing with down-sampling and edge enhancement, over-segmentation, detecting positions with a local minimum over shading from the structure of a tongue, and correcting local minima or detecting edge with color difference. The proposed method produces the region of a segmented tongue, and then decomposes the color components of the region into hue, saturation and brightness, resulting in classifying the regions of tongue furs(coatings) into kinds of coatings and substance and segmenting them. Spots are detected by using local maxima and the variation of saturation, and cracks are searched by using local minima and the directivity of dark areas in brightness. The results illustrate the segmented region with effective information, excluding a non-tongue region and also give us accurate discrimination of coatings and the precise detection of spots and cracks. It can be used to make an objective and standardized diagnosis for an u-Healthcare system as well as a home care system.

  • PDF

위성영상의 방사적 특성을 고려한 구름 탐지 방법 개발 (Development of Cloud Detection Method Considering Radiometric Characteristics of Satellite Imagery)

  • 서원우;강홍기;윤완상;임평채;이수암;김태정
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1211-1224
    • /
    • 2023
  • 구름은 광학위성을 이용한 국토 관측 및 재난 대응, 변화 탐지 등 지표의 현상을 관측하는데 있어 많은 어려운 문제를 야기한다. 구름의 존재는 영상 처리 단계 뿐만 아니라 최종적으로는 데이터의 품질에 영향을 미치므로 이를 반드시 식별하고 제거하는 과정이 필요하다. 따라서 본 연구에서는 위성영상 내 구름의 분광패턴에 가장 근접한 화소를 탐색 및 추출해 최적의 임계값을 선정하고 임계값을 바탕으로 구름 산출물을 제작하는 일련의 과정을 자동으로 수행하는 새로운 구름 탐지 기법을 개발하고자 하였다. 구름 탐지 기법은 크게 세 단계로 구성된다. 첫 번째 단계에서는 Digital Number (DN) 단위 영상을 대기상층 반사율 단위로 변환하는 과정을 수행한다. 두 번째 단계에서는 대기상층 반사율 영상을 이용하여 Hue-Value-Saturation (HSV) 변환 및 삼각형 임계 처리, 최대우도 분류 등의 전처리를 적용하고 각 영상별로 초기 구름 마스크 생성을 위한 임계값을 결정한다. 세번째 후처리 단계에서는 생성된 초기 구름 마스크에 포함된 노이즈를 제거하고 구름 경계 및 내부를 개선한다. 구름 탐지를 위한 실험 자료로 구름의 공간적, 계절적 분포의 다양성을 보여주는 4~11월 시기에 한반도 지역에서 촬영된 국토위성 L2G 영상을 사용하였다. 제안 방법의 성능을 검증하기 위해 단일 임계화 방법으로 생성된 결과를 비교하였다. 실험 결과, 제안 방법은 기존 방법과 비교하여 전처리 과정을 통해 각 영상의 방사학적 특성을 고려할 수 있어 보다 정확하게 구름을 검출할 수 있었다. 또한, 구름 개체를 제외한 나머지 밝은 물체(판넬식 지붕, 콘크리트 도로, 모래 등)의 영향을 최소화하는 결과를 보여주었다. 제안 방법은 기존 방법 대비 F1-score 기준으로 30% 이상의 개선된 결과를 보여주었으나 눈이 포함된 특정 영상에서 한계점이 있었다.

Automatic Person Identification using Multiple Cues

  • Swangpol, Danuwat;Chalidabhongse, Thanarat
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1202-1205
    • /
    • 2005
  • This paper describes a method for vision-based person identification that can detect, track, and recognize person from video using multiple cues: height and dressing colors. The method does not require constrained target's pose or fully frontal face image to identify the person. First, the system, which is connected to a pan-tilt-zoom camera, detects target using motion detection and human cardboard model. The system keeps tracking the moving target while it is trying to identify whether it is a human and identify who it is among the registered persons in the database. To segment the moving target from the background scene, we employ a version of background subtraction technique and some spatial filtering. Once the target is segmented, we then align the target with the generic human cardboard model to verify whether the detected target is a human. If the target is identified as a human, the card board model is also used to segment the body parts to obtain some salient features such as head, torso, and legs. The whole body silhouette is also analyzed to obtain the target's shape information such as height and slimness. We then use these multiple cues (at present, we uses shirt color, trousers color, and body height) to recognize the target using a supervised self-organization process. We preliminary tested the system on a set of 5 subjects with multiple clothes. The recognition rate is 100% if the person is wearing the clothes that were learned before. In case a person wears new dresses the system fail to identify. This means height is not enough to classify persons. We plan to extend the work by adding more cues such as skin color, and face recognition by utilizing the zoom capability of the camera to obtain high resolution view of face; then, evaluate the system with more subjects.

  • PDF