• Title/Summary/Keyword: Color coordinates

Search Result 300, Processing Time 0.026 seconds

The Study of Noise Reduction For Marking the Tag Clearly In Implementation of Augmented Reality (증강현실 구현에서 태그를 명확하게 하기 위한 잡음 제거에 관한 연구)

  • Lee, Gyeong-Ho;Kim, Young-Seop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.63-66
    • /
    • 2010
  • Detecting marker coordinates is important in augmented reality system based on tag. If a marker is not detected, objects can't be augmented. In this paper, we propose a noise reduction method for augmented reality. Using a blue color space to HIS color transformation was performed on the binary. Erosion operator and the dilation operator of the binary images were performed. Experimental results show that proposed method produces a tag image recognizable in various light environments. And using the area of the rectangle, the labeling could be detected through the tag. Tag recognition rate is improved by removing noise.

A Spectrophotometric Study on Color Differences between Various Light-Cured Composite Resins and Shade Guides (광중합형 복합레진과 shade guide의 색차에 관한 연구)

  • Lim, Kyung-Min;Lee, Min-Ho;Song, Kwang-Yeob
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.1
    • /
    • pp.13-22
    • /
    • 2009
  • The composite resin, due to its esthetic quality, is considered the material of choice for restoration of anterior teeth. To get a satisfactory result in the composite resin restorations, it is necessary to choose right shade. At present, most of the commercial composite resins are based on the Vita Lumin shade guides or shade guides that are provided by their company, but color differences among them might be expected even using the same shade in various materials. This study is to measure color differences between various light-cured composite resins and shade guides and to provide the clinicians with information which may aid in improved color match of esthetic restoration. Four kinds of light-cured composite resins (Gradia Direct (GD), Z250 (Z250), Clearfil AP-X (AP-X), Esthet X (E X)) and shade guides with A2 and A3 shade were used. Three specimens of each material and one specimen of each shade guide were made. Each composite resin was filled into the Teflon mold (1.35 mm depth, 8 mm diameter), followed by compression, polymerization and polishing with wet sandpaper. Shade guides were grinded with polishing stones and rubber points to a thickness of approximately 1.35 mm. Color characteristics were performed with a spectrophotometer(color i5, GretagMacbeth, USA). A computer-controlled spectrophotometer was used to determine CIELAB coordinates ($L^*$, $a^*$, $b^*$) of each specimen and shade guide. The CIELAB measurements made it possible to evaluate the amount of the color difference values (${\Delta}E^*ab$) between composite resins and shade guides. CIE standard D65 was used as the light source. The results were as follows : 1. Among the $L^*$, $a^*$, $b^*$ values of most of 4 kinds of composite resin specimens which are produced by same shade, there were significant differences(p<0.05). 2. Among all 4 kinds of composite resin specimens which are produced by same shade, there were color differences that is perceptible to human eye(${\Delta}E^*>3.3$). 3. Between most of composite resin specimens investigated and their corresponding shade guides, there were color differences that is perceptible to human eye(${\Delta}E^*>3.3$). 4. In the clinical environment, it is recommended that custom shade guides be made from resin material itself for better color matching. Shade guides supplied by manufacturers or Vita Lumin shade guide may not provide clinicians a accurate standard in matching color of composite resins, and there are perceptible color differences in most of products. Therefore, it is recommended that custom shade guides be made from resin material itself and used for better color matching.

Photoluminescence of Al2O3:xCr2O3 Solid Solution and Application as the Additive for Improving CRI of Red Phosphor (Al2O3:xCr2O3 고용상의 발광특성과 적색형광체의 연색성 향상을 위한 첨가제로의 응용)

  • Chae, Ki-Woong;Cheon, Chae-Il;Kim, Jeong-Seog
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.122-126
    • /
    • 2010
  • In this article photoluminescence of the $Al_2O_3:xCr_2O_3$ solid solutions prepared by solid state reaction method are represented. The effect of $Cr_2O_3$-activator concentration and heat treatment time on the PL characteristics have been discussed in conjunction with microstructure of phosphor samples. The $Al_2O_3:xCr_2O_3$ phosphors show the highest PL intensity at x=0.003 mole when the samples are reacted at $1600^{\circ}C$ for 5 h. The PL emission and absorption spectra show the maximum peaks at 698 nm and at 398 nm respectively. The CIE color coordinate is (x=0.646, y=0.316) at 0.003 mole $Cr_2O_3$, which value is very close to the NTSC coordinate of red color. This characteristic feature of $Al_2O_3:xCr_2O_3$ has been applied for an additive to improve the color characteristic of other red phosphor $LiEuW_2O_8$ which has a relatively poor color purity with an emission peak centered at 615 nm and with a CIE coordinate (x=0.530, y=0.280). The $Al_2O_3:0.003Cr_2O_3$ phosphor has been mixed with the $LiEuW_2O_8$ phosphor powder and the PL characteristics and CIE color coordinates are characterized. The $Al_2O_3:xCr_2O_3$ phosphor was found effective for improving the CRI (color rendering index) of $LiEuW_2O_8$ phosphor.

Study of a LED Driver for Extension of Color Gamut (색 영역의 확장을 위한 LED 구동회로에 대한 연구)

  • Shin, Dong-Seok;Park, Chan-Soo
    • Journal of Broadcast Engineering
    • /
    • v.21 no.5
    • /
    • pp.760-769
    • /
    • 2016
  • This paper proposes a hybrid LED driving circuit and its control method for extension of the color gamut of LED. The proposed hybrid LED driving circuit provides the constant current by switching regulation in the high current and by linear regulation in the low current through LED. Furthermore, the magnitudes of the high current and low current were controlled by CC(Continuous Current) control method and PWM(Pulse Width Modulation) control method, respectively. We experimentally confirmed that the current through RGB LED is linearly controlled to 2% maximum current ratio by varying PWM in the proposed driving circuit and control method. As a result of the measurement of the output light color in CIE1976 chromaticity coordinates, we confirmed that the color, which not be expressed by the existing method, uniformly expressed. We confirmed that the color, which can not be expressed by the existing method, was uniformly output and verified that the color gamut was expanded by the low current controlled by the proposed driving circuit and control method.

Color Images Utilizing the Properties Emotional Quantification Algorithm (이미지 색채 속성을 활용한 감성 정량화 알고리즘)

  • Lee, Yean-Ran
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.11
    • /
    • pp.1-9
    • /
    • 2015
  • Emotion recognition and regular controls are concentrated interest in computer studies to emotional changes. Thus, the quantified by objective assessment methods are essential for application of color sensibility computing situations. In this paper, it is applied to a digital color image emotion emotional computing calculations numbered recognized as one representation. Emotional computing research approach consists of a color attribute to the image recognition focused sensibility and emotional attributes of color is the color, brightness and saturation separated by. Computes the sensitivity weighted according to the score and the percentage increase or decrease in the sensitivity property tone applied to emotional expression. Sensitivity calculation is free-degree (X), and calculates the tension (Y-axis). And free-level (X-axis) coordinate of emotion, which is located the intersection of the tension (Y-axis) as a sensitivity point. The emotional effect of the Russell coordinates are utilizing the core (Core Affect). Tue numbers represent the size and sensitivity in the emotional relationship between emotional point location and quantified by computing the color sensibility.

A Study for Color and Illuminance Control Algorithm of Broadcast LED Lighting (방송용 LED 조명의 광색과 조도 제어 알고리즘에 대한 연구)

  • Shin, Dong-Seok;Park, Chul-Hyung;Park, Chong-Yeun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.6-17
    • /
    • 2015
  • In this paper, colors of broadcast lightings composed of Red, Green, and Blue LED(Light Emitted Diode) can be linearly and quantitatively controlled in low illuminance. Because LED cannot emit uniform illuminance in low illuminance, the colors of RGB LED are unmixable. Furthermore, the illuminances are nonlinear with the dimming values of the RGB LED due to the nonlinearity of the output illuminance with the current through the LED. This nonlinearity generated errors of the target colors and illuminances. The proposed algorithm set up the target colors, which is expressed by the color coordinates in CIE 1931 color space, and the target illuminances. Then the illuminances of RGB LED were calculated using color mixing theory. The calculated illuminances determined the dimming values of the RGB LED for transmission via DMX512 communication. After the broadcasting lighting received the dimming values of the RGB LED via DMX512 communication,.RGB LED can emit target color and illuminance, and be controlled by calculating the PWM(Pulse Width Modulation) duty ratio of the hybrid LED driver which be considered the nonlinearity for the illuminances of the LED. As a result, the proposed algorithm can linearly and quantitatively control the colors and illuminances in full range of illuminance. Then we verify experimentally that the errors of the emitted color coordination x, y and illuminance are 2.27%, 3.6% and 1.5%, respectively.

Color evaluation by thickness of interim restorative resin produced by digital light processing 3D printer (디지털 광학기술인 3D 프린터로 제작된 임시수복용 레진의 두께별 색 평가)

  • Kang, Wol;Kim, Won-Gi
    • Journal of Technologic Dentistry
    • /
    • v.43 no.3
    • /
    • pp.77-83
    • /
    • 2021
  • Purpose: The purpose of this in vitro study was to measure and compare the thickness-dependent color dimensions of digital light processing (DLP) three-dimensional (3D) printer and conventional interim restorative resin. Methods: Specimens (N=60) were fabricated using either subtractive manufacturing (S group) or DLP 3D printing (D group) material. All milled and 3D-printed specimens were allocated into three different groups (n=10) according to different thicknesses as follows: 1.0, 1.5, and 2.0 mm. Color measurements in the CIELab coordinates were made using a spectrophotometer under room light conditions (1,003 lux). The color differences (𝚫E*) between the specimen and control target data were calculated. Data were analyzed using the oneway analysis of variance (ANOVA). Post hoc comparisons were conducted using Tukey's honestly significant difference method (α=0.05 for all tests). Results: The 𝚫L*, 𝚫a*, 𝚫b*, and 𝚫E* values of interim restorative resin produced by DLP 3D printing were obtained in terms of the specimen's thickness increased compared with the increases by subtractive manufacturing. When the thickness was similar, the color difference between subtractive manufacturing and DLP 3D printing was ≥5.5, which is a value required by the dentist for remanufacturing. Conclusion: Color was influenced by the thickness of the interim restorative resin produced by DLP 3D printing.

Color changes of ceramic veneers following glazing with respect to their composition

  • Kim, Sung-Joon;Woo, Jae-Man;Jo, Chan Woo;Park, Ju-Hee;Kim, Soo Kyung;Kahm, Se Hoon
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.1
    • /
    • pp.16-22
    • /
    • 2019
  • PURPOSE. The purpose of this study was to compare the translucency and color changes of ceramic laminate veneers of different composition following glazing process. MATERIALS AND METHODS. $10mm{\times}10mm$ square specimens of 0.6 mm and 1.0 mm thicknesses were fabricated with IPS e.max Press (EM) and IPS e.max ZirPress (ZP) (n=10 per group). The color coordinates (CIE $L^*$ $a^*$ $b^*$) of the specimens were recorded with a colorimeter before and after glazing. The color changes and translucency parameter (TP) were calculated. For the comparisons with the composition and thicknesses between the 'not glazed' and 'glazed' groups, statistical analyses were done through paired T-test, independent two-sample T-test, and multiple regression analysis using SPSS 18.0 (P<.05). RESULTS. The TP of 0.6 mm EM was higher than that of 0.6 mm ZP. Total color difference (${\Delta}E^*$) between bare and glazed specimens of 1.0 mm EM was greater than that of 1.0 mm ZP with statistical significance. Following glazing, specimens from all groups showed statistically significant amount of decrease in $L^*$ and $a^*$, and statistically significant increase in $b^*$. The result of multiple regression analysis of EM and ZP showed that ${\Delta}L^*$ improved ${\Delta}E^*$. CONCLUSION. Within the limitations of present study, we conclude that translucency and color of ceramic laminate veneers change significantly after glazing process, and the nature and amount of changes vary with different compositions.

Effect of Temperature on the Luminous Properties of Remote-Phosphor White Light-Emitting Diodes (이격 형광체 구조가 적용된 백색 LED 광원의 온도변화에 따른 발광 특성 분석)

  • Choi, Min-Hyouk;Lee, Hun Jae;Ko, Jae-Hyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.5
    • /
    • pp.254-261
    • /
    • 2014
  • Two types of white light-emitting diodes (LEDs) with different phosphor structures were fabricated and compared in terms of their optical characteristics. Their spectroscopic properties were analyzed as a function of temperature, from room temperature to $80^{\circ}C$. The temperature dependence of the luminance and the color coordinates showed that the decrease in luminance and change in the color coordinates of the remote-phosphor type LED were much smaller compared to the conventional white LED. These improvements were attributed to the decrease in phosphor temperature, due to the distance between the LED chip and the phosphor layer, as well as to the reduced absorption by the LED chip of the light emitted from the phosphor layer.

Color Pure and Stable Blue Light Emitting Material Containing Anthracene and Fluorene for OLED

  • Park, Hyun-Tae;Oh, Dae-Hwan;Park, Jong-Won;Kim, Jin-Hak;Shin, Sung-Chul;Kim, Yun-Hi;Kwon, Soon-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1951-1955
    • /
    • 2010
  • A new blue light emitting anthracene derivative, 9,10-bis-(9',9'-diethyl-7'-t-butyl-fluoren-2'-yl)anthracene (BETF), has been designed and synthesized by a palladium catalyzed Suzuki cross-coupling. A theoretical calculation of the three-dimensional structure of BETF supports that it has a non coplanar structure and inhibited intermolecular interactions resulting in high luminescent efficiency and high color purity. BETF has good thermal stability with glass-transition temperature (Tg) of $131^{\circ}C$. The PL maximum of BETF in solution and film were 438 nm and 440 nm, respectively, showing pure blue emission. A multilayer device using BETF as emitting material exhibits maximum luminescence efficiency of 2.2 cd/A and a pure blue emission (Commission Internationale de L'Eclairage (CIE) coordinates of x = 0.15, y = 0.10).