Effect of Temperature on the Luminous Properties of Remote-Phosphor White Light-Emitting Diodes

이격 형광체 구조가 적용된 백색 LED 광원의 온도변화에 따른 발광 특성 분석

  • 최민혁 (한림대학교 전자물리학과) ;
  • 이헌재 (한림대학교 전자물리학과) ;
  • 고재현 (한림대학교 전자물리학과)
  • Received : 2014.08.04
  • Accepted : 2014.09.05
  • Published : 2014.10.25


Two types of white light-emitting diodes (LEDs) with different phosphor structures were fabricated and compared in terms of their optical characteristics. Their spectroscopic properties were analyzed as a function of temperature, from room temperature to $80^{\circ}C$. The temperature dependence of the luminance and the color coordinates showed that the decrease in luminance and change in the color coordinates of the remote-phosphor type LED were much smaller compared to the conventional white LED. These improvements were attributed to the decrease in phosphor temperature, due to the distance between the LED chip and the phosphor layer, as well as to the reduced absorption by the LED chip of the light emitted from the phosphor layer.

본 논문에서는 일반적인 코팅형 형광체와 이격 형광체 등 두 가지의 형광체 구조가 적용된 백색 LED를 제작한 후 온도변화에 따라 각 백색 LED의 발광 특성이 어떻게 변하는지 측정, 비교하였다. 상온에서 80oC 사이의 구간에서 측정된 두 백색 LED의 발광 스펙트럼을 분석하기 위해 Gaussian Lorentz-cross product 함수와 Asymmectic double sigmoidal 함수를 각각 청색 피크와 황색 피크의 곡선맞춤에 활용하였다. 이로부터 각 피크의 중심파장과 진폭, 반치폭 및 비대칭성을 온도의 함수로 구할 수 있었다. 온도에 따른 휘도와 색좌표를 측정한 결과 이격형광체 구조의 백색 LED의 온도에 따른 휘도저하율 및 색좌표 변화율이 훨씬 적었다. 이는 청색 LED 칩과 형광체가 분리됨에 따라 형광체의 온도가 일반 형광체 도포형 LED의 경우에 비해 낮아져서 효율이 상승했고 아울러 형광체에서 발생한 빛의 칩에 의한 흡수가 감소했기 때문인 것으로 해석된다.



  1. E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, Cambridge, New York, 2006).
  2. C. C. Lin and R.-S. Liu, "Advances in phosphors for light-emitting diodes," J. Phys. Chem. Lett. 2, 1268 (2011).
  3. M. Zachau, D. Becker, D. Berben, T. Fiedler, F. Jermann, and F. Zwaschka, "Phosphors for solid state lighting," Proc. SPIE 6910, 691010 (2008).
  4. H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, "Analysis of high-power packages for phosphor-based white-light-emitting diodes," Appl. Phys. Lett. 86, 243505 (2005).
  5. S. C. Allen and J. Steckl, "ELiXIR-Solid-state luminaire with enhanced light extraction by internal reflection," J. Disp. Tech. 3, 155-159 (2007).
  6. C. Hoelen, H. Borel, J. de Graaf, M. Keuper, M. Lankhorst, C. Mutter, L. Waumans, and R. Wegh, "Remote phosphor LED modules for general illumination - towards 200 lm/W general lighting LED light sources," Proc. SPIE 7058, 70580M (2008).
  7. M. T. Lin, S. P. Ying, M. Y. Lin, K. Y. Tai, S. C. Tai, C. H. Liu, J. C. Chen, and C. C. Sun, "Design of the ring remote phosphor structure for phosphor-converted whitelight- emitting diodes," Jpn. J. Appl. Phys. 49, 072101 (2010).
  8. H.-C. Kuo, C.-W. Hung, H.-C. Chen, J.-J. Chen, C.-H. Wang, C.-W. Sher, C.-C. Yeh, C.-C. Lin, C.-H. Chen, and Y.-J. Cheng, "Patterned structure of REMOTE PHOSPHOR for phosphor-converted white LEDs," Opt. Express 19, A930-A936 (2011).
  9. S.-C. Park, I. Rhee, J.-Y. Kim, H. J. Bark, and J. Jeong, "Luminous efficiency of open remote phosphor-converted white-light-emitting diodes," J. Korean Phys. Soc. 60, 1191-1195 (2012).
  10. J. Burgin, V. Jubera, H. Debea, B. Glorieux, A. Garcia, and Lucat, "Screen-printed phosphor coatings for white LED emission," J. Mater. Sci. 46, 2235-2241 (2011).
  11. Y. K. Lee, J. S. Lee, J. Heo, W. B. Im, and W. J. Chung, "Phosphor in glasses with Pb-free silicate glass powders as robust color-converting materials for white LED applications," Opt. Lett. 37, 3276-3278 (2012).
  12. C.-C. Tsai, W.-C. Cheng, J.-K. Chang, L.-Y. Chen, J.-H. Chen, Y.-C. Hsu, and W.-H. Cheng, "Ultra-high thermal-stable glass phosphor layer for phosphor-converted white lightemitting diodes," J. Disp. Tech. 9, 427-432 (2013).
  13. L. Yang, M. Chen, Z. Lv, S. Wang, X. Liu, and S. Liu, "Preparation of a YAG:Ce phosphor glass by screen-printing technology and its application in LED packaging," Opt. Lett. 38, 2240-2243 (2013).
  14. M.-H. Choi, H. J. Lee, and J.-H. Ko, "Comparison of spectral characteristics of conventional and remote-phosphor white LEDs as a function of driving current," submitted to New Phys.: Saemulli.
  15. H. W. Choi and J.-H. Ko, "Analysis of luminous characteristics of white LEDs depending on yellow phosphors," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 24, 64 (2013).
  16. H. W. Choi and J.-H. Ko, "Temperature effect on the optical properties of YAG and silicate phosphor-based white light emitting diodes," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 24, 135 (2013).
  17. F. Reifegerste and J. Lienig, "Modelling of the temperature and current dependence of LED spectra," J. Light Vis. Environ. 32, 18-24 (2008).
  18. A. Keppens, W. R. Ryckaert, G. Deconinck, and P. Hanselaer, "Modeling high power light-emitting diode spectra and their variation with junction temperature," J. Appl. Phys. 108, 043104 (2010).
  19. S. S. Jeong and J.-H. Ko, "Analysis of the spectral characteristics of white light-emitting diodes under various thermal environments," J. Inf. Disp. 13, 37-42 (2012).
  20. A. Keppens, W. R. Ryckaert, G. Deconinck, and P. Hanselaer, "High power light-emitting diode junction temperature determination from current-voltage characteristics," J. Appl. Phys. 104, 093104 (2008).
  21. B.-W. Lee and J.-H. Ko, "Simulation study on the optical performances of LED flat illumination devices based on remote phosphor designs," New Phys.: Sae Mulli 62, 47-55 (2012).

Cited by

  1. Evaluation of the isothermal curing process of UV-cured resin in terms of elasticity studied through micro-Brillouin light scattering vol.17, pp.2, 2016,