• Title/Summary/Keyword: Color classification

Search Result 596, Processing Time 0.033 seconds

Color Assortment Decision Factors Considered by Women's Clothing Merchandisers in Korea & United States

  • Kang, Keang-Young
    • Journal of Fashion Business
    • /
    • v.12 no.6
    • /
    • pp.34-45
    • /
    • 2008
  • This research was designed to find decision factors through color assortment planning process by Korean women's clothing merchandisers and to look for if there exists difference with American women's clothing merchandisers. A merchandise assortment is a collection of various quantities of styles, colors, sizes, and prices of related merchandise, usually grouped under one classification within a department. The subjects were 20 women's clothing merchandisers who work for clothing retail stores from 5 to 22 years in US and Korea. The authoring process was done for qualitative data analysis. The decision factors of color assortment planning were identified with four stages; information search, qualitative evaluation, quantitative evaluation, and selection. There were differences of color assortment decision factors due to different business types, business sizes, fashion-ability, sourcing ways, and merchandise turnover. Noticeable color assortment decision factor differences caused by country difference were not found except considering the target market ethnicity and skin color in US market. Korea merchandisers seem to be more sensitive to present sales data usages and spot order availability in color assortments because of more local production use than American merchandisers.

Classification of Man-Made and Natural Object Images in Color Images

  • Park, Chang-Min;Gu, Kyung-Mo;Kim, Sung-Young;Kim, Min-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1657-1664
    • /
    • 2004
  • We propose a method that classifies images into two object types man-made and natural objects. A central object is extracted from each image by using central object extraction method[1] before classification. A central object in an images defined as a set of regions that lies around center of the image and has significant color distribution against its surrounding. We define three measures to classify the object images. The first measure is energy of edge direction histogram. The energy is calculated based on the direction of only non-circular edges. The second measure is an energy difference along directions in Gabor filter dictionary. Maximum and minimum energy along directions in Gabor filter dictionary are selected and the energy difference is computed as the ratio of the maximum to the minimum value. The last one is a shape of an object, which is also represented by Gabor filter dictionary. Gabor filter dictionary for the shape of an object differs from the one for the texture in an object in which the former is computed from a binarized object image. Each measure is combined by using majority rule tin which decisions are made by the majority. A test with 600 images shows a classification accuracy of 86%.

  • PDF

Automatic Classification of SMD Packages using Neural Network (신경회로망을 이용한 SMD 패키지의 자동 분류)

  • Youn, SeungGeun;Lee, Youn Ae;Park, Tae Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.276-282
    • /
    • 2015
  • This paper proposes a SMD (surface mounting device) classification method for the PCB assembly inspection machines. The package types of SMD components should be classified to create the job program of the inspection machine. In order to reduce the creation time of job program, we developed the automatic classification algorithm for the SMD packages. We identified the chip-type packages by color and edge distribution of the images. The input images are transformed into the HSI color model, and the binarized histroms are extracted for H and S spaces. Also the edges are extracted from the binarized image, and quantized histograms are obtained for horizontal and vertical direction. The neural network is then applied to classify the package types from the histogram inputs. The experimental results are presented to verify the usefulness of the proposed method.

Classification of Micro-Landform on the Alluvial Plain Using Landsat TM Image: The Case of the Kum-ho River Basin Area (Landsat TM 영상(映像)을 이용한 충적평가(沖積平野) 미지형(微地形) 분류(分類) -금호강(琴湖江) 유역평야(流域平野)를 대상으로-)

  • Jo, Myung-Hee;Jo, Wha-Ryong
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.2
    • /
    • pp.197-204
    • /
    • 1996
  • We attempt to classifing method of micro-landform on the alluvial plain, such as natural-levee, backmarsh and alluvial fan, using false color composite of Landsat Thematic Mapper image. The study area is Kumho River Basin on the southeastern part of Korea peninsula. The most effective image for micro-landform classification is the false color composite of band 2, 3 and 4 with blue, green and red filtering. The most favorable time is the middle third of November, because of the density differentiation of green vegetation in most great. In this time the paddy field on the back-marsh is bare by rice harvesting. But on the natural levee the green vegetation, such as vegetables and lower herbs under fruit tree, remain relatively more. On the alluvial fan, the green vegetation condition is medium. For the verification of the micro-landform classification, we employed the field survey and grain size analysis of the deposition of each micro-landform on the sample area. It is clarified that the classification method of micro-landform on the alluvial plain using the Landsat TM image is relatively useful.

  • PDF

A Two-Stage Learning Method of CNN and K-means RGB Cluster for Sentiment Classification of Images (이미지 감성분류를 위한 CNN과 K-means RGB Cluster 이-단계 학습 방안)

  • Kim, Jeongtae;Park, Eunbi;Han, Kiwoong;Lee, Junghyun;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.139-156
    • /
    • 2021
  • The biggest reason for using a deep learning model in image classification is that it is possible to consider the relationship between each region by extracting each region's features from the overall information of the image. However, the CNN model may not be suitable for emotional image data without the image's regional features. To solve the difficulty of classifying emotion images, many researchers each year propose a CNN-based architecture suitable for emotion images. Studies on the relationship between color and human emotion were also conducted, and results were derived that different emotions are induced according to color. In studies using deep learning, there have been studies that apply color information to image subtraction classification. The case where the image's color information is additionally used than the case where the classification model is trained with only the image improves the accuracy of classifying image emotions. This study proposes two ways to increase the accuracy by incorporating the result value after the model classifies an image's emotion. Both methods improve accuracy by modifying the result value based on statistics using the color of the picture. When performing the test by finding the two-color combinations most distributed for all training data, the two-color combinations most distributed for each test data image were found. The result values were corrected according to the color combination distribution. This method weights the result value obtained after the model classifies an image's emotion by creating an expression based on the log function and the exponential function. Emotion6, classified into six emotions, and Artphoto classified into eight categories were used for the image data. Densenet169, Mnasnet, Resnet101, Resnet152, and Vgg19 architectures were used for the CNN model, and the performance evaluation was compared before and after applying the two-stage learning to the CNN model. Inspired by color psychology, which deals with the relationship between colors and emotions, when creating a model that classifies an image's sentiment, we studied how to improve accuracy by modifying the result values based on color. Sixteen colors were used: red, orange, yellow, green, blue, indigo, purple, turquoise, pink, magenta, brown, gray, silver, gold, white, and black. It has meaning. Using Scikit-learn's Clustering, the seven colors that are primarily distributed in the image are checked. Then, the RGB coordinate values of the colors from the image are compared with the RGB coordinate values of the 16 colors presented in the above data. That is, it was converted to the closest color. Suppose three or more color combinations are selected. In that case, too many color combinations occur, resulting in a problem in which the distribution is scattered, so a situation fewer influences the result value. Therefore, to solve this problem, two-color combinations were found and weighted to the model. Before training, the most distributed color combinations were found for all training data images. The distribution of color combinations for each class was stored in a Python dictionary format to be used during testing. During the test, the two-color combinations that are most distributed for each test data image are found. After that, we checked how the color combinations were distributed in the training data and corrected the result. We devised several equations to weight the result value from the model based on the extracted color as described above. The data set was randomly divided by 80:20, and the model was verified using 20% of the data as a test set. After splitting the remaining 80% of the data into five divisions to perform 5-fold cross-validation, the model was trained five times using different verification datasets. Finally, the performance was checked using the test dataset that was previously separated. Adam was used as the activation function, and the learning rate was set to 0.01. The training was performed as much as 20 epochs, and if the validation loss value did not decrease during five epochs of learning, the experiment was stopped. Early tapping was set to load the model with the best validation loss value. The classification accuracy was better when the extracted information using color properties was used together than the case using only the CNN architecture.

Extracting the color map and color chip for a patent and application (컬러 맵과 컬러 칩 추출의 특허 출원과 적용 사례)

  • Lee, Keum Hee
    • The Research Journal of the Costume Culture
    • /
    • v.20 no.6
    • /
    • pp.869-882
    • /
    • 2012
  • The purpose of this study is to obtain the patent for extracting the color map and color chip from the color image source and to develop color image map for fashion design. For this study, fashion image maps were produced from 210 pictures with Adobe Photoshop CS2 program targeting 200 university students from 2004 to 2006. The procedures for extracting the color map and color chip included providing the color image, the filtering phase, the segmentation phase, the extraction phrase, and the arrangement phase. Based on the results of this study, patent application was made to KIPO(Korean Intellectual Property Office) for this invention. The following effects can be expected from the standpoint of design based on the case study. First, it is a straight forward procedure to extract a color chip and color map from a color image. Second, it can be applied to various art works based on the recombination of colors as representative colors can be extracted from the related color image that combines a variety of colors. Third, desired colors can be selected based on the taste cluster classification or sensibility axis of design by extracting the representative color from the color image.

CAR DETECTION IN COLOR AERIAL IMAGE USING IMAGE OBJECT SEGMENTATION APPROACH

  • Lee, Jung-Bin;Kim, Jong-Hong;Kim, Jin-Woo;Heo, Joon
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.260-262
    • /
    • 2006
  • One of future remote sensing techniques for transportation application is vehicle detection from the space, which could be the basis of measuring traffic volume and recognizing traffic condition in the future. This paper introduces an approach to vehicle detection using image object segmentation approach. The object-oriented image processing is particularly beneficial to high-resolution image classification of urban area, which suffers from noisy components in general. The project site was Dae-Jeon metropolitan area and a set of true color aerial images at 10cm resolution was used for the test. Authors investigated a variety of parameters such as scale, color, and shape and produced a customized solution for vehicle detection, which is based on a knowledge-based hierarchical model in the environment of eCognition. The highest tumbling block of the vehicle detection in the given data sets was to discriminate vehicles in dark color from new black asphalt pavement. Except for the cases, the overall accuracy was over 90%.

  • PDF

Usefulness of Color-overlay Pattern of Thyroid Elastic Ultrasonography (갑상선 탄성 초음파 검사 시 칼라 오버레이 패턴의 유용성)

  • Park, Ji-Yeon;Cho, Pyong-Kon
    • Journal of radiological science and technology
    • /
    • v.45 no.4
    • /
    • pp.341-346
    • /
    • 2022
  • The color overlay pattern of thyroid shear wave elastography applied in this study distinguishes benign and malignant nodules based on the optimal cut-off value of 74.2 kPa. From august 2021 to september 2021, thyroid ultrasound and elastography were performed on 57 patients with thyroid lesions using an ultrasound device RS85 prestige (Samsung Medison, Korea) and a 2-14 MHz linear transducer. In addition, the results of classification by K-TIRADS for each thyroid nodule and the results of classification by color overlay pattern according to the kPa value of acoustic ultrasound were compared and analyzed. In the color overlay pattern, the results classified as 40 people from dark blue to light blue and 17 people from green to red were similar to the K-TIRADS category results, which were classified as 42 benign and 15 malignant. Between blue and light blue, benign, and between green and red, malignant. If the shear wave elastography method is applied before the fine-needle aspiration cytology of the thyroid nodule is performed, the differential diagnosis of thyroid tissue from benign and malignant can be predicted in advance, and it will help to reduce unnecessary invasive tests.

Object Detection and Classification Using Extended Descriptors for Video Surveillance Applications (비디오 감시 응용에서 확장된 기술자를 이용한 물체 검출과 분류)

  • Islam, Mohammad Khairul;Jahan, Farah;Min, Jae-Hong;Baek, Joong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.12-20
    • /
    • 2011
  • In this paper, we propose an efficient object detection and classification algorithm for video surveillance applications. Previous researches mainly concentrated either on object detection or classification using particular type of feature e.g., Scale Invariant Feature Transform (SIFT) or Speeded Up Robust Feature (SURF) etc. In this paper we propose an algorithm that mutually performs object detection and classification. We combinedly use heterogeneous types of features such as texture and color distribution from local patches to increase object detection and classification rates. We perform object detection using spatial clustering on interest points, and use Bag of Words model and Naive Bayes classifier respectively for image representation and classification. Experimental results show that our combined feature is better than the individual local descriptor in object classification rate.

A Novel RGB Channel Assimilation for Hyperspectral Image Classification using 3D-Convolutional Neural Network with Bi-Long Short-Term Memory

  • M. Preethi;C. Velayutham;S. Arumugaperumal
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.177-186
    • /
    • 2023
  • Hyperspectral imaging technology is one of the most efficient and fast-growing technologies in recent years. Hyperspectral image (HSI) comprises contiguous spectral bands for every pixel that is used to detect the object with significant accuracy and details. HSI contains high dimensionality of spectral information which is not easy to classify every pixel. To confront the problem, we propose a novel RGB channel Assimilation for classification methods. The color features are extracted by using chromaticity computation. Additionally, this work discusses the classification of hyperspectral image based on Domain Transform Interpolated Convolution Filter (DTICF) and 3D-CNN with Bi-directional-Long Short Term Memory (Bi-LSTM). There are three steps for the proposed techniques: First, HSI data is converted to RGB images with spatial features. Before using the DTICF, the RGB images of HSI and patch of the input image from raw HSI are integrated. Afterward, the pair features of spectral and spatial are excerpted using DTICF from integrated HSI. Those obtained spatial and spectral features are finally given into the designed 3D-CNN with Bi-LSTM framework. In the second step, the excerpted color features are classified by 2D-CNN. The probabilistic classification map of 3D-CNN-Bi-LSTM, and 2D-CNN are fused. In the last step, additionally, Markov Random Field (MRF) is utilized for improving the fused probabilistic classification map efficiently. Based on the experimental results, two different hyperspectral images prove that novel RGB channel assimilation of DTICF-3D-CNN-Bi-LSTM approach is more important and provides good classification results compared to other classification approaches.