본 논문에서는 웨이브릿 변환 영역에서 추출된 특징을 기반으로 한 내용기반 영상검색 방법에 관해 연구하였다. 기존의 웨이브릿 기반의 방법에서의 문제점인 특징벡터의 크기를 줄이기 위해 웨이브릿 계수의 영역별 에너지 값을 이용하였으며, 대상물의 이동, 회전, 크기 변화에 영향을 받지 않는 모멘트 특성을 이용한 검색방법을 제안하였다. 본 방법은 특징벡터의 크기를 줄이고, 기존의 특징벡터와 비교해서 검색시간을 단축하면서 분류검색의 효율성을 향상시켰다. 영역기반 영상검색 기능을 제공하기 위해 영상분할 방법에 대해 연구하였으며, 불규칙한 광원에 의한 영향을 최소화할 수 있는 영상분할 방법을 제안하였다 영상분할은 영역병합을 이용하였고, 병합후보영역은 웨이브릿 변환의 고주파 대역 에너지 값을 이용하여 선정하였다 분할된 영역정보를 이용하여 칼라와 질감, 모양 특징벡터를 구성하여 영역기반 영상검색을 수행하였다.
본 논문은 HSI 컬러 모델에서 색상(Hue)의 주기성을 고려한 블록기반 영상분할 방법을 제안한다. 제안한 방법에서는 영역 병합 시 사용되는 영역의 색상 대푯값으로 색상의 평균 대신 중앙점을 사용하며, 영역 간 색상차를 계산하기 위해 단방향 거리를 사용한다. 그리고 기존방법에서 사용한 복잡하게 계산된 영역별 임계값을 파라메타를 통해 조절할 수 있는 간단하지만 효율적인 임계값으로 수정한다. 실험결과 제안한 방법의 분할결과가 질감 성분이나 붉은 색상을 가진 영역에서 기존 방법을 사용했을 때 보다 더 자연스러우며, 제안한 방법과 기존 방법으로 버클리 영상분할 데이터베이스에서 제공하는 자연영상들을 분할하여 평가값을 비교해 본 결과 제안한 방법이 기존방법에 비해서 더 우수함을 알 수 있었다.
최근 소개된 구글 MediaPipe의 모발 분할 방식은 실시간 모바일 애플리케이션을 위해 특별히 설계된 단일 카메라 입력에서 신경망 기반 모발 분할을 위한 새로운 접근 방식을 제시한다. 상대적으로 작은 신경망으로 가상 머리카락 다시 칠하기와 같은 증강 현실 효과에 매우 적합한 고품질 머리카락 분할 마스크를 생성한다. 그렇지만, 모발 스타일 또는 모발 영역에 잡음이 있는 경우에 모발 분할 정확도가 떨어지는 문제점들이 있다. 이에 본 연구에서는 지정된 라벨에서 모발 위치와 모발 색상 가능성의 추정된 사전 분포에 따라 이미지의 에너지 함수를 구성하고, 이것을 그래프 절단 알고리즘에 따라 최적화시키는 방식으로 초기 모발 영역을 얻는 방식을 도입한다. 그런 다음에, 초기 모발 영역에 클러스터링 알고리즘과 사후 처리 기법을 적용하여 최종 모발 영역을 정밀하게 분할 할 수 있도록 한다. 제안된 방식은 MediaPipe의 모발 분할 파이프라인에 적용된다.
Real time and robust algorithm to extract the features of watermelon was developed from the remotely transmitted image of the watermelon. Features of the watermelon at the cultivation site such as size and shape including position are crucial to the successful tole-robotic operation and development of the cultivation data base. Algorithm was developed based on the concept of task sharing between the computer and the operator utilizing man-computer interface. Task sharing was performed based on the functional characteristics of human and computer. Identifying watermelon from the image transmitted from the cultivation site is very difficult because of the variable light condition and the complex image contents such as soil, mulching vinyl, straws on the ground, irregular leaves and stems. Utilizing operator's teaching through the touch screen mounted on the image monitor, the complex time consuming image processing process and instability of processing results in the watermelon identification has been avoided. Color and brightness characteristics were analyzed from the image area specified by the operator's teaching. Watermelon segmentation was performed using the brightness and color distribution of the specified imae processing area. Modified general Hough transform was developed to extract the shape, major and minor axes, and the position, of the watermelon. It took less than 100 msec of the image processing time, and was a lot faster than conventional approach. The proposed method showed the robustness and practicability in identifying watermelon from the wireless transmitted color image of the cultivation site.
색채는 중요한 시각적 요소로서 도시 이미지와 사람들의 인식 형성에 중요한 영향을 미친다. 도시환경에서 색채를 정량적으로 분석하는 작업은 복잡한 과정을 필요로 하여 과거에는 실행하기가 어려웠다. 그러나 최근 머신 러닝 기술의 급속한 발전으로 관광객이 공유한 사진을 이용하여 도시 색채를 분석하는 것이 가능해졌다. 본 연구는 중국의 인기 관광지인 대리시를 사례로 선정하여 관광객이 공유한 대리시의 사진을 수집하였으며, 머신 러닝 기술을 결합하여 대규모 도시 색채를 측정하는 방법을 탐색하였다. 구체적으로는 먼저 DeepLabv3+ 모델을 사용하여 ADE20k 데이터 셋을 기반으로 관광객이 공유한 사진의 의미 분할을 수행하여 사진에서 인공 요소를 분리했다. 다음으로 K-means 클러스터링 알고리즘을 사용하여 대리시의 인공 요소의 주요 색상을 추출하고, 이러한 색상 간의 상관관계를 분석하기 위해 인접 매트릭스를 구축했다. 연구 결과에 따르면 대리시의 인공 요소의 주요 색상은 주황-회색이 가장 높은 비율을 차지한다. 또한, 회색 계열의 색상이 다른 색상과 자주 조합되어 사용되는 경향이 있다. 분석에 따르면 대리시의 인공 요소의 색채 특성은 지역의 민족 문화와 불교 문화의 영향을 받는 것으로 나타났다. 본 연구는 색채 분석을 위한 새로운 접근 방법을 제공하며, 연구 결과는 대리시가 관광객의 기대에 부합하는 도시 색채 이미지를 형성하는 데 도움이 될 뿐만 아니라 향후 대리시의 색채 계획을 위한 참고 자료를 제공하고자 한다.
본 논문은 스키니 스머지 툴을 이용한 2D 가상 컬러 헤어스타일러에 관한 것이다. 스머지 툴(smudge tool)은 어도비 포토샵에 내장된 대중적인 그래픽 툴로서 물감을 화폭 상에 문질러서 흐려지게 할 시에 이용된다. 그 효과는 지두화법과 매우 유사하다. 스머지 툴은 스머지 아이콘을 클릭한 다음에 화폭 위를 클릭한 후, 마우스 버튼을 누른 상태에서 번짐 효과를 주고 싶은 방향으로 끌어당김으로써 그 기능을 이용할 수 있다. 그러나 기존의 스머지 툴은 마스터 직경 내의 모든 화소값을 블렌딩시켜 목표 영상을 생성함에 따라 원하지 않는 부위의 화소마저도 변형시키는 단점이 있다. 이러한 단점을 해결하고자 본 논문에서는 마스터 형상 분할에 기반한 스키니 스머지 툴(skinny smudge tool)을 제안하고자 한다. 제안된 스키니 스머지 툴은 컬러 영상 분할에 통해 윤곽 형상에 밀착된 마스터 형상을 추출함에 따라 배경에 관계없이 변형하고 싶은 부분에만 번짐 효과를 적용시킬 수 있는 장점이 있다.
대량 주문 생산은 의류 시장에서 고속으로 성장하는 분야이다. 의류 대량 주문 생산 분야에서 2D 가상 착의 시스템은 생산하기 전에 의류를 판매하는 것을 가능하게 해주고 제품 개발과 제조와 관련된 시간과 비용을 절감할 수 있도록 지원하는 비주얼 도구들 중 하나이다. 본 논문은 2D 실사 기반 가상 착의 시스템의 직물 컬러 매핑 방법에 관한 것이다 제안된 방법은 의류 모델 영상에서 영역 성장 기법을 통해 원하는 의류 형상을 분할한 후, 분할된 의류 형상 영역의 명도 차분 맵에 기반하여, 사용자가 선택한 새로운 직물 컬러를 해당 의류 형상 영역에 매핑시킨다. 2D 가상 착의 시스템에서 제안된 방법을 이용할 경우, 모델 의류의 컬러나 명도에 관계없이, 선택된 의류 형상 영역의 음영 및 조명 특성을 유지하면서 직물 컬러를 가상적으로 변경시킬 수 있다. 또한 각기 다른 스타일 혹은 전체 차림새를 위한 다양한 직물 컬러 조합을 신속하고 용이하게 시뮬레이션하고 비교 선택할 수 있다.
Building segmentation using satellite imagery such as EO (Electro-Optical) and SAR (Synthetic-Aperture Radar) images are widely used due to their various uses. EO images have the advantage of having color information, and they are noise-free. In contrast, SAR images can identify the physical characteristics and geometrical information that the EO image cannot capture. This paper proposes a learning framework for efficient building segmentation that consists of a teacher-student-based privileged knowledge distillation and deformable convolution block. The teacher network utilizes EO and SAR images simultaneously to produce richer features and provide them to the student network, while the student network only uses EO images. To do this, we present objective functions that consist of Kullback-Leibler divergence loss and knowledge distillation loss. Furthermore, we introduce deformable convolution to avoid pixel-level noise and efficiently capture hard samples such as small and thin buildings at the global level. Experimental result shows that our method outperforms other methods and efficiently captures complex samples such as a small or narrow building. Moreover, Since our method can be applied to various methods.
Computational speed plays key role in background subtraction and shadow detection, because those are only preprocessing steps of a moving object segmentation, tracking and activity recognition. A color intensity variation based approach fastly detect a moving object and extract shadow in a image sequences. The moving object is subtracted from background using meanmax, meanmin thresholds and shadow is detected by decrease limit and correspondence thresholds. The proposed approach relies on the ability to represent shadow cast impact by offline experiment dataset on sub grouped RGB color space.
To improve the effect of image restoration and solve the image detail loss, an image dehazing enhancement algorithm based on mean guided filtering is proposed. The superpixel calculation method is used to pre-segment the original foggy image to obtain different sub-regions. The Ncut algorithm is used to segment the original image, and it outputs the segmented image until there is no more region merging in the image. By means of the mean-guided filtering method, the minimum value is selected as the value of the current pixel point in the local small block of the dark image, and the dark primary color image is obtained, and its transmittance is calculated to obtain the image edge detection result. According to the prior law of dark channel, a classic image dehazing enhancement model is established, and the model is combined with a median filter with low computational complexity to denoise the image in real time and maintain the jump of the mutation area to achieve image dehazing enhancement. The experimental results show that the image dehazing and enhancement effect of the proposed algorithm has obvious advantages, can retain a large amount of image detail information, and the values of information entropy, peak signal-to-noise ratio, and structural similarity are high. The research innovatively combines a variety of methods to achieve image dehazing and improve the quality effect. Through segmentation, filtering, denoising and other operations, the image quality is effectively improved, which provides an important reference for the improvement of image processing technology.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.