• 제목/요약/키워드: Color and Texture Feature

검색결과 138건 처리시간 0.027초

LBP와 HSV 컬러 히스토그램을 이용한 내용 기반 영상 검색 (Content-based Image Retrieval using LBP and HSV Color Histogram)

  • 이권;이철희
    • 방송공학회논문지
    • /
    • 제18권3호
    • /
    • pp.372-379
    • /
    • 2013
  • 본 논문에서는 LBP와 HSV 컬러 히스토그램을 이용한 내용 기반 영상 검색 방법을 제안한다. 영상 검색 시스템에서는 텍스트가 아닌 사용자가 원하는 특정한 객체를 포함하는 영상을 질의로 입력하여 원하는 영상을 검색한다. 대부분의 연구에서는 색상, 질감, 모양 등과 같은 전역 특징 값을 이용하여 영상을 검색한다. 이러한 전역 특징 값들은 하늘이나 바닥과 같은 배경이 큰 부분을 차지하는 영상에서는 특징 값의 대부분이 배경에서 추출되어 영상 검색의 성능 저하를 초래한다. 이러한 문제를 해결하기 위해, 컬러를 이용하여 영상의 배경을 고속으로 검출하고 배경의 영향을 줄여 관심 객체의 특징을 강조한다. 제안된 방법에서는 특징 값으로 HSV 컬러 히스토그램과 Local Binary Patterns을 사용한다. 또한, 색의 경계 부분의 패턴을 추출하기 위해 양자화 된 Hue 채널에서 Local Binary Patterns을 추출한다. 제안된 알고리즘의 성능 검증하기 위해, Corel 1000 database를 이용하여 실험한 결과 82% 이상의 높은 검색 정확도를 나타내었다.

Support Vector Machine 기반 지형분류 기법 (Terrain Cover Classification Technique Based on Support Vector Machine)

  • 성기열;박준성;유준
    • 전자공학회논문지SC
    • /
    • 제45권6호
    • /
    • pp.55-59
    • /
    • 2008
  • 야외 환경에서 무인차량의 자율주행에 있어서 효과적인 기동제어를 위해서는 장애물 탐지나 지형의 기하학적인 형상 정보외에 탐지된 장애물 및 지형 표면에 대한 재질 유형의 인식 및 분류 또한 중요한 요소이다. 영상 기반의 지표면 분류 알고리듬은 입력 영상에 대한 전처리, 특징추출, 분류 및 후처리의 절차로 수행된다. 본 논문에서는 컬러 CCD 카메라로부터 획득된 야외 지형영상에 대해 색상 및 질감 정보를 이용한 지형분류 기법을 제시한다. 전처리 단계에서 색공간 변환을 수행하고, 색상과 질감 정보를 이용하기 위해 웨이블릿 변환 특징을 사용하였으며, 분류기로서는 SVM(support vector machine)을 적용하였다. 야외 환경에서 획득된 실영상에 대한 실험을 통하여 제시된 알고리듬의 분류 성능을 평가하였으며, 제시된 알고리듬에 의한 효과적인 야지 지형분류의 가능성을 확인하였다.

색상 및 형태 정보를 이용한 클러스터링 기반의 효과적인 이미지 검색 기법 (An Efficient Clustering Based Image Retrieval using Color and Shape features)

  • 이근섭;조정원;최병욱
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 제13회 신호처리 합동 학술대회 논문집
    • /
    • pp.363-366
    • /
    • 2000
  • 이미지의 한가지 특징(feature)만을 고려한 내용 기반 이미지 검색(content-based image retrieval)은 두가지 이상의 특징 정보를 사용했을 경우와 비교하여 정확도(precision)가 떨어져 성능을 저하시킬 수 있다 따라서 대부분의 검색 시스템에서는 색상(color)이나 형태(shape), 질감(texture) 등과 같은 이미지의 다양한 특징들을 결합하여 검색에 이용하고 있다. 본 논문에서는 이미지의 색상 및 형태 정보를 이용하여 사용자의 질의와 유사한 이미지를 제공하고, 고 차원화된 이미지의 특징들을 클러스터링(clustering) 방법을 이용하여 빠르게 검색할 수 있도록 하였으며, 또한 검색시 그룹 경계 보정 방법을 이용하여 전체 검색을 하지 않고도 전체검색 결과와 동일한 결과를 얻을 수 있는 시스템을 설계 및 구현하였다. 실험에 사용된 데이터는 2022개의 자연 영상이였으며, HSI 색상 정보와 이미지의 에지(edge) 정보를 특징 벡터로 삼았다. 실험 결과, 색상 정보 하나만을 사용한 경우보다 정확도와 재현율면에서 사용자가 원하는 이미지와 보다 유사한 결과를 검출할 수 있었을 뿐만 아니라 클러스터링을 사용함으로써 보다 빠르고, 전체검색 결과와 동일한 검색이 가능하다는 것을 입증하였다.

  • PDF

MRI Image Retrieval Using Wavelet with Mahalanobis Distance Measurement

  • Rajakumar, K.;Muttan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1188-1193
    • /
    • 2013
  • In content based image retrieval (CBIR) system, the images are represented based upon its feature such as color, texture, shape, and spatial relationship etc. In this paper, we propose a MRI Image Retrieval using wavelet transform with mahalanobis distance measurement. Wavelet transformation can also be easily extended to 2-D (image) or 3-D (volume) data by successively applying 1-D transformation on different dimensions. The proposed algorithm has tested using wavelet transform and performance analysis have done with HH and $H^*$ elimination methods. The retrieval image is the relevance between a query image and any database image, the relevance similarity is ranked according to the closest similar measures computed by the mahalanobis distance measurement. An adaptive similarity synthesis approach based on a linear combination of individual feature level similarities are analyzed and presented in this paper. The feature weights are calculated by considering both the precision and recall rate of the top retrieved relevant images as predicted by our enhanced technique. Hence, to produce effective results the weights are dynamically updated for robust searching process. The experimental results show that the proposed algorithm is easily identifies target object and reduces the influence of background in the image and thus improves the performance of MRI image retrieval.

Wavelet 변환 영역에서 칼라 정보와 GLCM 및 방향성을 이용한 영상 검색 (Image Retrieval Using Color feature and GLCM and Direction in Wavelet Transform Domain)

  • 이정봉
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 춘계종합학술대회
    • /
    • pp.585-589
    • /
    • 2002
  • 본 논문에서는 효과적인 특징 추출을 기반으로 한 계층적인 검색 시스템을 제안한다. 조명 변화 및 영상의 이동과 크기 변화 그리고 회전과 같은 기하학적 변형에도 강한 속성을 가지는 영상 검색을 할 수 있도록 사용자의 질의 영상을 웨이블릿(Wavelet) 변환을 한 후 동일한 크기의 부영역으로 나누어진 저대역 부밴드에서 칼라의 특징으로 추출된 모멘트와 질감 특징인 GLCM(Gray Level Co-occurrence Matrix)의 Contrast를 사용해 유사 영상들의 1차 분류 과정을 거친다. 보다 정확한 검색을 수행하기 위해 1차 분류된 후보 영상들에 대해 고대역 부밴드에서 추출된 수평, 수직, 대각선 방향별 에너지(Energy)를 기반으로 한 에너지의 상대적인 성분 분포의 비교가 수행됨으로써 효율적인 영상 검색 결과를 보였다.

  • PDF

1990년대에 패션의 복고풍에 관한 고찰 -1960년대 Mode의 재현을 중심으로- (A Study on Retro-look Fashion Appeared in 1990′s -With Special Reference to The Revival of 1960′s Mode-)

  • 류숙희;박종희
    • 복식문화연구
    • /
    • 제4권2호
    • /
    • pp.247-263
    • /
    • 1996
  • This study focuses on a comparative study of 1960s'retro look mode in terms of the past and present in order to find out in detail how it in the past is readjusted after it was appeared in the present. For such a study, in the first place the contents of the dress and its ornament of a retro-look fashion was refined through some literature, and then, some works of the dress and its ornament of a retro-look fashion was refinded through some literature, and then, some works of eh dress and its ornament revived in 1960's mode were analysed, based on some fashion magazines at home and abroad like Bazaar, Fashion etc News in 1990s. After 1960s'retro-look mode which reappeared in 1990s was researched in terms of silhouette, detail, texture, color, and pattern, differences between those tow periods of 1960s and 1990s and their causes are summarized as follows: 1. In the aspect of silhouette, it appears that the silhouette in 1960s is that of somewhat stiff, charming image in which Body is excluded and the silhouette in 1990s is that of an soft, feminie image in which Body is emphasized. It was understood that the cause of such a delicate difference comes from the influences of the change in aesthetic senses or awareness, naturalism and neo-feminism. 2. In the aspect of detail, it appears that the detail in 1990s is of an attempt to express in diverse images, compared to that in 1960s, and new images are created new image in 1990s by means of presenting entirely ill-matched images. The major cause of that is because of Antistandard fashion. 3. In the aspect of textures, it appears that a great feature is that the texture in 1990s is of that introduced, being changed in natural and high-class looks, compared to that of 1960s. It was reviewed that the major cause of this is because of a result from the influence of naturalism and the technical growth in various fields which has brought the development of dress material. 4. In the aspect of color, it appears that the color in 1990s is of an image of primary color which is far more sensual and feminie than that of 1960s. It was studied that the major cause of ti comes from the influence of neo-feminism, etc. 5. In the aspect of pattern, it appears that the pattern in 1990s is of that of symbolism, transposition, and the ecletic feature of various modes which appear more deeply than that of 1960s. It was studied that the major cause of such changes is because of a trend of postmodernism which has brought the change of the spiritual structure different from that in the age of modernism. In conclusion, it was understood that the retro-look fashion is of an expression technic of dress and its ornament in that o dress in the pst is simply imitate, but new reconstitution is done by using the elements in the past. at the same time, ti was clarified that even though the elements in the past are revived as they were, dress and its ornament is governed by the social and cultural environments of he day, and with this proof it can be said that the fashion in each age is of a reflection of social phenomena of that age.

  • PDF

유전자 알고리즘을 이용한 영상 특징 추출 (Image Feature Extraction using Genetic Algorithm)

  • 박상성;안동규
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.133-139
    • /
    • 2006
  • 컴퓨터 정보기술의 발달로 멀티미디어 데이터가 급증하고 있다. 특히, 영상검색 분야에서는 영상 데이터의 신속, 정확한 처리 및 분석이 요구된다. 그러나 일반적으로 신속성과 정확성을 모두 보장하는 데는 어려움이 있다. 본 논문은 이러한 문제를 해결하기 위하여 유전자 알고리즘을 이용해 영상의 대표 특징치를 추출하는 알고리즘을 제안한다. 이 알고리즘은 영상이 가지고 있는 대표적인 특징치 뽑아냄으로써 검색의 신속성과 정확성을 보장한다. 영상의 특징으로는 색상과 질감을 사용하였다. 실험결과, 기존의 연구에 비해 제안된 특징 추출법이 더 좋은 정확성을 보임으로서 제안된 방법의 타당성을 입증하였다.

  • PDF

실시간 비디오 포토 모자이크를 위한 이미지 집합 최적화 (Image Set Optimization for Real-Time Video Photomosaics)

  • 최윤석;구본기
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.502-507
    • /
    • 2009
  • 본 논문에서는 실시간 포토 모자이크 생성을 위한 이미지 집합 최적화 기법을 소개한다. 포토 모자이크 기법은 작은 포토 이미지를 사용하여 한 장의 큰 사진을 완성하는 기법으로 이미지를 일정한 영역의 셀로 분할한 후 각 셀 영역을 색상, 모양, 무늬 등에서 적합한 이미지로 대체한다. 큰 사진을 구성하는 이미지에 필요한 다양한 패턴을 얻기 위해서는 많은 양의 포토 타일 이미지가 필요하게 된다. 많은 양의 포토 이미지는 이미지 패턴 검색 시간을 오래 걸리게 하고, 이미지 저장을 위해 많은 리소스를 필요로 한다. 이러한 제약은 실시간 처리나 리소스의 제한이 있는 휴대용 기기에서의 포토 모자이크의 적용을 힘들게 한다. 본 논문에서는 패턴 검색 시간 향상과 메모리 요구 최소화를 위해 유전 알고리즘 활용하여 전체 이미지 데이터베이스에서 가장 특징이 있는 이미지를 선별하여 작은 이미지 집합을 구축한다.

  • PDF

강인한 특징 변수 선별과 신경망을 이용한 장면 전환점 검출 기법 (Robust Feature Selection and Shot Change Detection Method Using the Neural Networks)

  • 홍승범;홍교영
    • 한국멀티미디어학회논문지
    • /
    • 제7권7호
    • /
    • pp.877-885
    • /
    • 2004
  • 본 논문은 여러 가지 장면 검출 방식들 중 강인한 특징 변수들의 선별과 신경망을 이용하여 향상된 장면 전환점 검출 기법을 제안한다. 기존의 장면 전환점 검출 방식에서는 인접한 프레임 간에 단일 특징과 고정된 임계값을 주로 사용하였다. 하지만, 비디오 시퀀스 내의 장면 전환점에서는 인접한 프레임 간의 내용(content)인 컬러, 모양, 배경 혹은 질감 등이 동시에 변화한다. 따라서 단일 특징보다는 상호 보완 관계를 갖는 강인한 특징을 이용하여 장면 전환점을 효율적으로 검출한다. 본 논문에서 강인한 특징 변수들을 선택하기 위해, 데이터 마이닝 기법 중 대표적인 CART(classification and regression tree)를 이용하고, 다차원 변수에 따른 임계값을 선정하기 위해 역전파 신경망(backpropagation neural net)을 이용한다. 제안한 방식과 대표적인 특징 추출인 PCA(principal component analysis)기법을 비교하여 특징 변수의 추출 성능을 평가한다. 실험 결과에 따라 제안된 방식이 PCA 기법과 비교하여 우수한 성능이 나타남을 확인한다.

  • PDF

영역 기반의 영상 질의를 이용한 내용 기반 영상 검색 (Content-based image retrieval using region-based image querying)

  • 김낙우;송호영;김봉태
    • 한국통신학회논문지
    • /
    • 제32권10C호
    • /
    • pp.990-999
    • /
    • 2007
  • 본 논문에서는 효과적인 영상 검색을 위한 방법으로서 JSEG 영상 분할 기법을 통한 영역 기반의 영상 인덱싱 및 검색 기법을 제안한다. JSEG은 영상을 색상 분류에 따라 양자화하고 이에 영역 윈도우를 적용시켜 J-image를 만든 다음, 세부 분할된 영역의 성장과 병합을 통하여 영상을 효과적으로 분할하는 방법이다. 제안하는 영상 검색 시스템은 JSEG에 의해 분할된 영상을 사용자에게 질의 영상으로 주고, 사용자로 하여금 분할 영상에서 관심 영역군(群)을 선택하게 한다. 그리고 나서, 사용자 질의에 의해 선택된 영역의 MBR을 구하고 이 영역의 중심을 기준으로 다중 윈도우 마스크를 생성하여 적용시킴으로써 특정 관심 영역을 중심으로 한 영상의 전역적인 특징을 추출한다. 최종적으로 추출된 특징의 성능 비교를 위한 기술자로는 누적 히스토그램을 이용하였다. 제안된 방법은 특정 영역에서의 특징과 전역 특징을 동시에 추출하여 검색에 이용함으로써 보다 빠르고 정확하게 사용자가 원하는 영상을 제공할 수 있다. 실험 결과는 영상 색인 및 검색에 있어서 제안된 방법이 영상 기반의 검색 기법과 비교하여 더 효과적임을 보여준다.