• Title/Summary/Keyword: Color and Texture Feature

Search Result 138, Processing Time 0.027 seconds

COLORNET: Importance of Color Spaces in Content based Image Retrieval

  • Judy Gateri;Richard Rimiru;Micheal Kimwele
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.33-40
    • /
    • 2023
  • The mainstay of current image recovery frameworks is Content-Based Image Retrieval (CBIR). The most distinctive retrieval method involves the submission of an image query, after which the system extracts visual characteristics such as shape, color, and texture from the images. Most of the techniques use RGB color space to extract and classify images as it is the default color space of the images when those techniques fail to change the color space of the images. To determine the most effective color space for retrieving images, this research discusses the transformation of RGB to different color spaces, feature extraction, and usage of Convolutional Neural Networks for retrieval.

Image Clustering using Improved Neural Network Algorithm (개선된 신경망 알고리즘을 이용한 영상 클러스터링)

  • 박상성;이만희;유헌우;문호석;장동식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.597-603
    • /
    • 2004
  • In retrieving large database of image data, the clustering is essential for fast retrieval. However, it is difficult to cluster a number of image data adequately. Moreover, current retrieval methods using similarities are uncertain of retrieval accuracy and take much retrieving time. In this paper, a suggested image retrieval system combines Fuzzy ART neural network algorithm to reinforce defects and to support them efficiently. This image retrieval system takes color and texture as specific feature required in retrieval system and normalizes each of them. We adapt Fuzzy ART algorithm as neural network which receive normalized input-vector and propose improved Fuzzy ART algorithm. The result of implementation with 200 image data shows approximately retrieval ratio of 83%.

A Image Search Algorithm using Coefficients of The Cosine Transform (여현변환 계수를 이용한 이미지 탐색 알고리즘)

  • Lee, Seok-Han
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.1
    • /
    • pp.13-21
    • /
    • 2019
  • The content based on image retrieval makes use of features of information within image such as color, texture and share for Retrieval data. we present a novel approach for improving retrieval accuracy based on DCT Filter-Bank. First, we perform DCT on a given image, and generate a Filter-Bank using the DCT coefficients for each color channel. In this step, DC and the limited number of AC coefficients are used. Next, a feature vector is obtained from the histogram of the quantized DC coefficients. Then, AC coefficients in the Filter-Bank are separated into three main groups indicating horizontal, vertical, and diagonal edge directions, respectively, according to their spatial-frequency properties. Each directional group creates its histogram after employing Otsu binarization technique. Finally, we project each histogram on the horizontal and vertical axes, and generate a feature vector for each group. The computed DC and AC feature vectors bins are concatenated, and it is used in the similarity checking procedure. We experimented using 1,000 databases, and as a result, this approach outperformed the old retrieval method which used color information.

Feature-Based Image Retrieval using SOM-Based R*-Tree

  • Shin, Min-Hwa;Kwon, Chang-Hee;Bae, Sang-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.223-230
    • /
    • 2003
  • Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e 'g', documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors, and are usually high-dimensional data. The performance of conventional multidimensional data structures(e'g', R- Tree family, K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. In this paper, we propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors.The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-Organizing Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological of the feature map, and preserves the mutual relationship (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. A best-matching-image-list. (BMIL) holds similar images that are closest to each codebook vector. In a topological feature map, there are empty nodes in which no image is classified. When we build an R*-tree, we use codebook vectors of topological feature map which eliminates the empty nodes that cause unnecessary disk access and degrade retrieval performance. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40, 000 images. The result show that the SOM-based R*-tree outperforms both the SOM and R*-tree due to the reduction of the number of nodes required to build R*-tree and retrieval time cost.

  • PDF

A STORAGE AND RETRIEVAL SYSTEM FOR LARGE COLLECTIONS OF REMOTE SENSING IMAGES

  • Kwak Nohyun;Chung Chin-Wan;Park Ho-hyun;Lee Seok-Lyong;Kim Sang-Hee
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.763-765
    • /
    • 2005
  • In the area of remote sensing, an immense number of images are continuously generated by various remote sensing systems. These images must then be managed by a database system efficient storage and retrieval. There are many types of image database systems, among which the content-based image retrieval (CBIR) system is the most advanced. CBIR utilizes the metadata of images including the feature data for indexing and searching images. Therefore, the performance of image retrieval is significantly affected by the storage method of the image metadata. There are many features of images such as color, texture, and shape. We mainly consider the shape feature because shape can be identified in any remote sensing while color does not always necessarily appear in some remote sensing. In this paper, we propose a metadata representation and storage method for image search based on shape features. First, we extend MPEG-7 to describe the shape features which are not defined in the MPEG-7 standard. Second, we design a storage schema for storing images and their metadata in a relational database system. Then, we propose an efficient storage method for managing the shape feature data using a Wavelet technique. Finally, we provide the performance results of our proposed storage method.

  • PDF

Genetic Algorithm for Image Feature Selection (영상 특징 선택을 위한 유전 알고리즘)

  • Shin Youns-Geun;Park Sang-Sung;Jang Dong-Sik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.193-195
    • /
    • 2006
  • As multimedia information increases sharply, In image retrieval field the method that can analyze image data quickly and exactly is required. In the case of image data, because each data includes a lot of informations, between accuracy and speed of retrieval become trade-off. To solve these problem, feature vector extracting process that use Genetic Algorithm for implementing prompt and correct image clustering system in case of retrieval of mass image data is proposed. After extracting color and texture features, the representative feature vector among these features is extracted by using Genetic Algorithm.

  • PDF

Person Identification based on Clothing Feature (의상 특징 기반의 동일인 식별)

  • Choi, Yoo-Joo;Park, Sun-Mi;Cho, We-Duke;Kim, Ku-Jin
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • With the widespread use of vision-based surveillance systems, the capability for person identification is now an essential component. However, the CCTV cameras used in surveillance systems tend to produce relatively low-resolution images, making it difficult to use face recognition techniques for person identification. Therefore, an algorithm is proposed for person identification in CCTV camera images based on the clothing. Whenever a person is authenticated at the main entrance of a building, the clothing feature of that person is extracted and added to the database. Using a given image, the clothing area is detected using background subtraction and skin color detection techniques. The clothing feature vector is then composed of textural and color features of the clothing region, where the textural feature is extracted based on a local edge histogram, while the color feature is extracted using octree-based quantization of a color map. When given a query image, the person can then be identified by finding the most similar clothing feature from the database, where the Euclidean distance is used as the similarity measure. Experimental results show an 80% success rate for person identification with the proposed algorithm, and only a 43% success rate when using face recognition.

Object Detection and Classification Using Extended Descriptors for Video Surveillance Applications (비디오 감시 응용에서 확장된 기술자를 이용한 물체 검출과 분류)

  • Islam, Mohammad Khairul;Jahan, Farah;Min, Jae-Hong;Baek, Joong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.12-20
    • /
    • 2011
  • In this paper, we propose an efficient object detection and classification algorithm for video surveillance applications. Previous researches mainly concentrated either on object detection or classification using particular type of feature e.g., Scale Invariant Feature Transform (SIFT) or Speeded Up Robust Feature (SURF) etc. In this paper we propose an algorithm that mutually performs object detection and classification. We combinedly use heterogeneous types of features such as texture and color distribution from local patches to increase object detection and classification rates. We perform object detection using spatial clustering on interest points, and use Bag of Words model and Naive Bayes classifier respectively for image representation and classification. Experimental results show that our combined feature is better than the individual local descriptor in object classification rate.

Fast Object Classification Using Texture and Color Information for Video Surveillance Applications (비디오 감시 응용을 위한 텍스쳐와 컬러 정보를 이용한 고속 물체 인식)

  • Islam, Mohammad Khairul;Jahan, Farah;Min, Jae-Hong;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.1
    • /
    • pp.140-146
    • /
    • 2011
  • In this paper, we propose a fast object classification method based on texture and color information for video surveillance. We take the advantage of local patches by extracting SURF and color histogram from images. SURF gives intensity content information and color information strengthens distinctiveness by providing links to patch content. We achieve the advantages of fast computation of SURF as well as color cues of objects. We use Bag of Word models to generate global descriptors of a region of interest (ROI) or an image using the local features, and Na$\ddot{i}$ve Bayes model for classifying the global descriptor. In this paper, we also investigate discriminative descriptor named Scale Invariant Feature Transform (SIFT). Our experiment result for 4 classes of the objects shows 95.75% of classification rate.

Efficient application method for materials in Lightscape (Lightscape 에서의 재질에 따른 효과적인 표현방법)

  • Park, Ji-Ae;Chang, Jun-Ho;Choi, An-Seop
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.184-188
    • /
    • 2006
  • Lightscape is a visual rendering software enabling higher dimensional 3D image production using rendering as well. However, direct light simulation showed that more realistic feature of material-specific texture or color could be achieved by adjusting options. Accordingly, this study is to generate optimal values of options and achieve more realistic images by varying such values according to individual materials in order to create better quality simulation images using Lightscape.

  • PDF