• Title/Summary/Keyword: Color Similarity

Search Result 390, Processing Time 0.024 seconds

Measure of similarity by toll theory and matching using fuzzy relation matrix - focused on 3-dimensional images (톨이론에 의한 유사도 계산과 퍼지 관계 행렬을 이용한 정합과정의 수행 - 3차원 영상을 중심으로)

  • 조동욱;한길성;조용환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1698-1706
    • /
    • 1997
  • In this paper, we envisioned a multimedia object recognition system processing and combinig information from all available sources, such as 2-D, 3-D, color and sound data. Out of the overall system, we proposed 3-D information extraction and object recognition methods. Firstly, surfaces are classified by z-gradient from the range data, surface features are extracted using the intersection of normal vectors. Also feature relationship such as intersection angle and distance is established between the surfaces. Secondly, recognition is accomplished by matching process which is improtant step in the image understanding systems. Matching process is very improtant procedures because of more general and more efficient method is needed in the field of multimedia sytem. Therefore, we focused the proposal of matching process and in this article, first of all, we deal with the matching process of the 3-D object. Similarity measures are calculated.

  • PDF

A Study on the Similarity between Religious Soo-Jeong Bae Costume and Kazakh and Tajik Minority Women's Costume in Northwestern China (중국 서북지역 하자크족과 타지크족 여성 민속복식과 종교복식의 유사성 연구)

  • Xu, Rui;Bae, Soo-Jeong
    • Journal of Fashion Business
    • /
    • v.23 no.5
    • /
    • pp.48-66
    • /
    • 2019
  • The purpose of this thesis was to investigate the similarities between religious costumes and Kazakh and Tajik minority women's costumes in the Chinese northwestern minority population that believes in both Islam and Shamanism. The research was conducted by investigating the forms, colors, and patterns of 240 representative costume pieces and making quantitative comparisons between religious and traditional costumes. The results showed that the Kazakh and Tajik costumes were similarly formed, both intended to cover the human body. Both the Islamic and traditional headdresses were also similarly shaped. In terms of color, black, white, green, and blue were found frequently in the Islamic religious costumes, as were red and yellow. Red, white, and brown, ascribed to the colors of shamanism, signifying incantations, were also frequent, indicating that this was engrained in their lives. A review of the traditional costumes revealed the patterns of Islam. Plants, geometry, abstraction, and letter patterns were dominant, whereas the meaning of the Islamic patterns, rebirth, sun, life, and hope, influenced the traditional costume patterns. Patterns associated with incantations, like the animal horns shown in the shamanism religious costumes, were persistently observed even after the people were converted to Islam. This study on the similarities between religious and traditional costumes in the Chinese minority might help us understand the connection between religious and traditional costumes and elucidate the cultural costume transition process.

Research on Pairwise Attention Reinforcement Model Using Feature Matching (특징 매칭을 이용한 페어와이즈 어텐션 강화 모델에 대한 연구)

  • Joon-Shik Lim;Yeong-Seok Ju
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.390-396
    • /
    • 2024
  • Vision Transformer (ViT) learns relationships between patches, but it may overlook important features such as color, texture, and boundaries, which can result in performance limitations in fields like medical imaging or facial recognition. To address this issue, this study proposes the Pairwise Attention Reinforcement (PAR) model. The PAR model takes both the training image and a reference image as input into the encoder, calculates the similarity between the two images, and matches the attention score maps of images with high similarity, reinforcing the matching areas of the training image. This process emphasizes important features between images and allows even subtle differences to be distinguished. In experiments using clock-drawing test data, the PAR model achieved a Precision of 0.9516, Recall of 0.8883, F1-Score of 0.9166, and an Accuracy of 92.93%. The proposed model showed a 12% performance improvement compared to API-Net, which uses the pairwise attention approach, and demonstrated a 2% performance improvement over the ViT model.

A Object-Based Image Retrieval Using Feature Analysis and Fractal Dimension (특징 분석과 프랙탈 차원을 이용한 객체 기반 영상검색)

  • 이정봉;박장춘
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.2
    • /
    • pp.173-186
    • /
    • 2004
  • This paper proposed the content-based retrieval system as a method for performing image retrieval through the effective feature extraction of the object of significant meaning based on the characteristics of man's visual system. To allow the object region of interest to be primarily detected, the region, being comparatively large size, greatly different from the background color and located in the middle of the image, was judged as the major object with a meaning. To get the original features of the image, the cumulative sum of tile declination difference vector the segment of the object contour had and the signature of the bipartite object were extracted and used in the form of being applied to the rotation of the object and the change of the size after partition of the total length of the object contour of the image into the normalized segment. Starting with this form feature, it was possible to make a retrieval robust to any change in translation, rotation and scaling by combining information on the texture sample, color and eccentricity and measuring the degree of similarity. It responded less sensitively to the phenomenon of distortion of the object feature due to the partial change or damage of the region. Also, the method of imposing a different weight of similarity on the image feature based on the relationship of complexity between measured objects using the fractal dimension by the Boxing-Counting Dimension minimized the wrong retrieval and showed more efficient retrieval rate.

  • PDF

Wire Recognition on the Chip Photo based on Histogram (칩 사진 상의 와이어 인식 방법)

  • Jhang, Kyoungson
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.111-120
    • /
    • 2016
  • Wire recognition is one of the important tasks in chip reverse engineering since connectivity comes from wires. Recognized wires are used to recover logical or functional representation of the corresponding circuit. Though manual recognition provides accurate results, it becomes impossible, as the number of wires is more than hundreds of thousands. Wires on a chip usually have specific intensity or color characteristics since they are made of specific materials. This paper proposes two stage wire recognition scheme; image binarization and then the process of determining whether regions in binary image are wires or not. We employ existing techniques for two processes. Since the second process requires the characteristics of wires, the users needs to select the typical wire region in the given image. The histogram characteristic of the selected region is used in calculating histogram similarity between the typical wire region and the other regions. The first experiment is to select the most appropriate binarization scheme for the second process. The second experiment on the second process compares three proposed methods employing histogram similarity of grayscale or HSV color since there have not been proposed any wire recognition method comparable by experiment. The best method shows more than 98% of true positive rate for 25 test examples.

An Efficient Video Sequence Matching Algorithm (효율적인 비디오 시퀀스 정합 알고리즘)

  • 김상현;박래홍
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.45-52
    • /
    • 2004
  • According tothe development of digital media technologies various algorithms for video sequence matching have been proposed to match the video sequences efficiently. A large number of video sequence matching methods have focused on frame-wise query, whereas a relatively few algorithms have been presented for video sequence matching or video shot matching. In this paper, we propose an efficientalgorithm to index the video sequences and to retrieve the sequences for video sequence query. To improve the accuracy and performance of video sequence matching, we employ the Cauchy function as a similarity measure between histograms of consecutive frames, which yields a high performance compared with conventional measures. The key frames extracted from segmented video shots can be used not only for video shot clustering but also for video sequence matching or browsing, where the key frame is defined by the frame that is significantly different from the previous fames. Several key frame extraction algorithms have been proposed, in which similar methods used for shot boundary detection were employed with proper similarity measures. In this paper, we propose the efficient algorithm to extract key frames using the cumulative Cauchy function measure and. compare its performance with that of conventional algorithms. Video sequence matching can be performed by evaluating the similarity between data sets of key frames. To improve the matching efficiency with the set of extracted key frames we employ the Cauchy function and the modified Hausdorff distance. Experimental results with several color video sequences show that the proposed method yields the high matching performance and accuracy with a low computational load compared with conventional algorithms.

Phylogenetic relationships of genera Trametes on the basis of ITS region sequences (rDNA의 ITS 부위 염기서열 분석에 의한 구름버섯 균주의 유전적인 유연관계 분석)

  • Lee, Chan-Jung;Jhune, Chang-Sung;Cheong, Jong-Chun;Oh, Jin-A;Han, Hye-Su;Um, Na-Na
    • Journal of Mushroom
    • /
    • v.9 no.1
    • /
    • pp.27-33
    • /
    • 2011
  • This study was carried to identify a correct species and asses genetic diversity within the same species of Trametes spp. preserved in Division of applied Microbiology The morphological and cultural characteristics of preserved strains were observed through microscope and investigated on PDA, respectively. Contaminated isolates showed different growth rates, morphology and color of hyphae. We have reconstructed the phylogenetic tree of a select group of Trametes spp. using nucleotide sequences of the internal transcribed spacer region(ITS) region. The phylogenetic tree was constructed by using the neighbor-joining method. PELF primers of 20-mer were used to assess genetic diversity of preserved isolates. Sequence analysis showed that five strains were different species and six strains were identified completely different nomenclature. According to the analysis of ITS sequences, the genus Trametes clustered into four distinct group, most of which correlated with species-groups identified by RAPD method. Seven isolates included TM 01 strain showed high similarity with Trametes versicolr, TM 07 and TM 10 high similarity with Trametes gibbosa, and TM 05 high similarity with Trametes elegans. But isolates collected in the United States was identified as T. junipericola. T. gibbosa and T. versicolor by RAPD analysis of genetic polymorphisms showed a very different band patterns and these strains showed different band patterns on areas. As the result of RAPD and ITS region sequences analysis for preserved isolates, it seems likely that 11 isolates of Trametes spp. may be need to reclassify or eliminate from preserved catalogue.

Real-Time Interested Pedestrian Detection and Tracking in Controllable Camera Environment (제어 가능한 카메라 환경에서 실시간 관심 보행자 검출 및 추적)

  • Lee, Byung-Sun;Rhee, Eun-Joo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.293-297
    • /
    • 2007
  • This thesis suggests a new algorithm to detects multiple moving objects using a CMODE(Correct Multiple Object DEtection) method in the color images acquired in real-time and to track the interested pedestrian using motion and hue information. The multiple objects are detected, and then shaking trees or moving cars are removed using structural characteristics and shape information of the man , the interested pedestrian can be detected, The first similarity judgment for tracking an interested pedestrian is to use the distance between the previous interested pedestrian's centroid and the present pedestrian's centroid. For the area where the first similarity is detected, three feature points are calculated using k-mean algorithm, and the second similarity is judged and tracked using the average hue value for the $3{\times}3$ area of each feature point. The zooming of camera is adjusted to track an interested pedestrian at a long distance easily and the FOV(Field of View) of camera is adjusted in case the pedestrian is not situated in the fixed range of the screen. As a experiment results, comparing the suggested CMODE method with the labeling method, an average approach rate is one fourth of labeling method, and an average detecting time is faster three times than labeling method. Even in a complex background, such as the areas where trees are shaking or cars are moving, or the area of shadows, interested pedestrian detection is showed a high detection rate of average 96.5%. The tracking of an interested pedestrian is showed high tracking rate of average 95% using the information of situation and hue, and interested pedestrian can be tracked successively through a camera FOV and zooming adjustment.

  • PDF

SOM-Based $R^{*}-Tree$ for Similarity Retrieval (자기 조직화 맵 기반 유사 검색 시스템)

  • O, Chang-Yun;Im, Dong-Ju;O, Gun-Seok;Bae, Sang-Hyeon
    • The KIPS Transactions:PartD
    • /
    • v.8D no.5
    • /
    • pp.507-512
    • /
    • 2001
  • Feature-based similarity has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects. the performance of conventional multidimensional data structures tends to deteriorate as the number of dimensions of feature vectors increase. The $R^{*}-Tree$ is the most successful variant of the R-Tree. In this paper, we propose a SOM-based $R^{*}-Tree$ as a new indexing method for high-dimensional feature vectors. The SOM-based $R^{*}-Tree$ combines SOM and $R^{*}-Tree$ to achieve search performance more scalable to high-dimensionalties. Self-Organizingf Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two-dimensional space. The map is called a topological feature map, and preserves the mutual relationships (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. We experimentally compare the retrieval time cost of a SOM-based $R^{*}-Tree$ with of an SOM and $R^{*}-Tree$ using color feature vectors extracted from 40,000 images. The results show that the SOM-based $R^{*}-Tree$ outperform both the SOM and $R^{*}-Tree$ due to reduction of the number of nodes to build $R^{*}-Tree$ and retrieval time cost.

  • PDF

Invariant Classification and Detection for Cloth Searching (의류 검색용 회전 및 스케일 불변 이미지 분류 및 검색 기술)

  • Hwang, Inseong;Cho, Beobkeun;Jeon, Seungwoo;Choe, Yunsik
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.396-404
    • /
    • 2014
  • The field of searching clothing, which is very difficult due to the nature of the informal sector, has been in an effort to reduce the recognition error and computational complexity. However, there is no concrete examples of the whole progress of learning and recognizing for cloth, and the related technologies are still showing many limitations. In this paper, the whole process including identifying both the person and cloth in an image and analyzing both its color and texture pattern is specifically shown for classification. Especially, deformable search descriptor, LBPROT_35 is proposed for identifying the pattern of clothing. The proposed method is scale and rotation invariant, so we can obtain even higher detection rate even though the scale and angle of the image changes. In addition, the color classifier with the color space quantization is proposed not to loose color similarity. In simulation, we build database by training a total of 810 images from the clothing images on the internet, and test some of them. As a result, the proposed method shows a good performance as it has 94.4% matching rate while the former Dense-SIFT method has 63.9%.