• 제목/요약/키워드: Color Sensor

검색결과 522건 처리시간 0.028초

Simulation of Remote Sensing Reflectance and Ocean Color Algorithms for High Resolution Ocean Sensor

  • Ahn, Yu-Hwan;Shanmugam, P.;Moon, Jeong-Eon
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.103-106
    • /
    • 2003
  • Retrieval of ocean color information from Multispectral Camera (MSC) on KOMPSAT-2 was investigated to study and characterize small-scale biophysical features in the coastal oceans. Prior to the derivation of such information from space-acquired ocean color imageries, the atmospheric effects largely from path and the air-sea interface should be removed from the total signal recorded at the top of the atmosphere (T$_{TOA}$). In this study, the 'path-extraction' is introduced and demonstrated on the TM and SeaWiFS imageries of highly turbid coastal waters of Korea. The algorithms for retrieval of ocean color information were explored from the remote reflectance (R$_{rs}$) in the visible wavebands of MSC. The determination of coefficient (R$^{2}$) for log-transformed data [ N = 500] was 0.90. Similarly, the R$^{2}$ value for log-transformed data [ N = 500] was found to be 0.93.

  • PDF

A New Approach of Intensity Predictio in Copper Electroplating Monitoring Using Hybrid HSMM and ANN

  • Wang, Li;Hwan, Ahn-Jong;Lee, Ho-Jae;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.137-137
    • /
    • 2010
  • Copper electroplating is a very popular and important technology for depositing high-quality conductor interconnections, especially in through silicon via (TSV). As this advanced packaging technique developing, a mass of copper and chemical solution are used, so attention to these chemical materials into the utilization and costs can not be ignored. An economical and practical real-time chemical solution monitoring has not been achieved yet. Either Red-green-blue (RGB) or optical emission spectroscopy (OES) color sensor can successfully monitor the color condition of solution during the process. The reaction rate, uniformity and quality can map onto the color changing. Hidden Semi Markov model (HSMM) can establish mapping from the color change to upper indicators, and artificial neural network (ANN) can be integrated to comprehensively determine its targets, whether the solution inside the container can continue to use.

  • PDF

Nondestructive Nutrient Diagnosis for Nitrogen with Specific Color Difference Sensor(SCDS) in Hydroponics of Tomato (Lycopersicon esculentum MILL.) (토마토 양액 재배시 비파괴 간이 질소 영양 진단)

  • 이용범;노미영;조영렬;배종향
    • Journal of Bio-Environment Control
    • /
    • 제4권2호
    • /
    • pp.175-180
    • /
    • 1995
  • This study was conducted to establish the nondestructive nutrient diagnosis method for nitrogen in tomato leaf using SCDS(specific color difference sensor). NFT(nutrient film technique) system was used in this experiment and nitrogen concentrations treated in nutrient solution were 0, 10, 50, 100, 150, 200, 300 and 600ppm. As nitrogen concentration in nutrient solution was increased from 0ppm to 150ppm, the stomatal resistance of tomato leaf was decreased abruptly, the $CO_2$ assimilation rate was increased but there was no big difference in the range of 100-500ppm. As the SCDS value of tomato leaf was increased, the $CO_2$ assimilation rate was increased linearly but the total average fruit weight and marketable yield were increased quadratically. The $CO_2$ assimilation rate was largely increased in the 0-3% range of leaf nitrogen content, but photosynthetic saturation was shown in 3.3-3.5%. The leaf nitrogen content was closely related to SCDS value of tomato leaf. Considering physiological activity, growth and yield of tomato, the optimum ranges of leaf nitrogen content were found to be 3.0-3.8% and the SCDS values equivalent for those ranges were 40.0-52.2.

  • PDF

Rhodamine Based Fluorescent Chemosensors for Hg2+ and its Biological Application

  • Choi, Ji-Young;Kim, Wan-Tae;Yoon, Ju-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2359-2364
    • /
    • 2012
  • Two new chemosensors, rhodamine 6G derivative bearing hydroxyethyl group (1) and rhodamine base derivative bearing 15-crown-5 group (2) were synthesized and their sensing behaviors toward various metal ions were investigated by UV/Vis and fluorescence spectroscopies. Addition of $Hg^{2+}$ ion to a $CH_3CN$ solution of 1 and 2 gave visual color changes as well as fluorescent OFF-ON observations. Selectivity and sensitivity of 1 towards $Hg^{2+}$ are excellent enough to detect micromolar level of $Hg^{2+}$ ion, even in equeous media and biological sample (HeLa cell).

Color Compensation of an Underwater Imaging System Using Electromagnetic Wave Propagation

  • Inoue, Kotaro;Lee, Min-Chul;Kim, Cheol-Su;Cho, Myungjin
    • Journal of information and communication convergence engineering
    • /
    • 제14권3호
    • /
    • pp.200-206
    • /
    • 2016
  • Images can be obtained by collecting rays from objects. The characteristics of electromagnetic wave propagation depend on the medium. In particular, in an underwater imaging system, the interface between air and water must be considered. Further, reflection and transmission coefficients can be found by using electromagnetic theory. Because of the fact that the values of these coefficients differ according to the media, the recorded light intensities will change. A color image sensor has three different color channels. Therefore, the reflection and transmission coefficients have to be calculated individually. Thereafter, by using these coefficients, we can compensate for the color information of underwater objects. In this paper, we present a method to compensate for the color information of underwater objects by using electromagnetic wave propagation theory. To prove our method, we conducted optical experiments and evaluated the quality of the compensated image by a metric known as mean square error.

Ocean Disaster Detection System(OD2S) using Geostationary Ocean Color Imager(GOCI) (천리안해양관측위성을 활용한 해양 재난 검출 시스템)

  • Yang, Hyun;Ryu, Jeung-Mi;Han, Hee-Jeong;Ryu, Joo-Hyung;Park, Young-Je
    • Journal of Information Technology Services
    • /
    • 제11권sup호
    • /
    • pp.177-189
    • /
    • 2012
  • We developed the ocean disaster detection system(OD2S) which copes with the occurrences of ocean disasters (e. g. the red and green tide, the oil spill, the typhoon, and the sea ice) by converging and integrating the ocean color remote sensing using the satellite and the information technology exploiting the mass data processing and the pattern recognitions. This system which is based on the cosine similarity detects the ocean disasters in real time. The existing ocean color sensors which are operated in the polar orbit platforms cannot conduct the real time observation of ocean environments because they support the low temporal resolutions of one observation a day. However, geostationary ocean color imager(GOCI), the first geostationary ocean color sensor in the world, produces the ocean color images(e. g. the chlorophyll, the colored dissolved organic matter(CDOM), and the total suspended solid(TSS)), with high temporal resolutions of hourly intervals up to eight observations a day. The evaluation demonstrated that the OD2S can detect the excessive concentration of chlorophyll, CDOM, and TSS. Based on these results, it is expected that OD2S detects the ocean disasters in real time.

Driving Current Control for Time-Stable RGB LED Backlighting Using Time-Varying Transform Matrix (시변 변환 행렬을 이용한 시간에 안정된 RGB LED Backlighting 구동 전류 제어)

  • Park, Kee-Hyon;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • 제46권4호
    • /
    • pp.42-49
    • /
    • 2009
  • This paper proposes a driving current control method for a back light unit (BLU), consisting of red, green, and blue (RGB) light-emitting diodes (LEDs), whereby an RGB optical sensor is used to check the output color stimulus variation to enable a time-stable color stimulus for light emission by the RGB LED BLU. First, to obtain the present color stimulus information of the RGB LED BLU, an RGB to XYZ transform matrix is derived to enable CIEXYZ values to be calculated for the RGB LED BLU from the output values of an RGB optical sensor. The elements of the RGB to XYZ transform matrix are polynomial coefficients resulting from a polynomial regression. Next, to obtain the proper duty control values for the current supplied to the RGB LEDs, an XYZ to Duty transform matrix is derived to calculate the duty control values for the RGB LEDs from the target CIEXYZ values. The data used to derive the XYZ to Duty transform matrix are the CIEXYZ values for the RGB LED BLU estimated from the output values of the RGB optical sensor and corresponding duty control values applied to the RGB LEDs for the present, first preceding, and second preceding sequential check points. With every fixed-interval check of the color stimulus of the RGB LED BLU, the XYZ to Duty transform matrix changes adaptively according to the present lighting condition of the RGB LED BLU, thereby allowing the RGB LED BLU to emit the target color stimulus in a time-stable format regardless of changes in the lighting condition of the RGB LEDs.

Development of Reflection-type Fiber-optic pH Sensor Using Sol-gel Film (졸-겔 필름을 이용한 반사형 광섬유 pH 센서의 개발)

  • Yoo, Wook-Jae;Seo, Jeong-Ki;Jang, Kyoung-Won;Moon, Jin-Soo;Han, Ki-Tek;Park, Jang-Yeon;Lee, Bong-Soo;Cho, Seung-Hyun;Heo, Ji-Yeon;Park, Byung-Gi
    • Journal of Sensor Science and Technology
    • /
    • 제20권4호
    • /
    • pp.266-271
    • /
    • 2011
  • A reflection-type fiber-optic pH sensor, which is composed of a pH sol-gel film, plastic optical fibers, a mirror, a light source and a spectrometer, is developed in this study. As pH indicators, a bromthymol blue, a cresol red and a thymol blue are used, and they are immobilized in the sol-gel films. The emitted light from a light source is guided by a fiber-optic Y-coupler and plastic optical fibers to the pH sol-gel film in a pH sensing probe. The pH change in the sensing probe gives rise to a change in the color of the pH sol-gel film, and the optical characteristic of reflected light through the pH sol-gel film is also changed. Therefore, we have measured the spectra of reflected lights, which are changed according to the color variations of the pH sol-gel films with different pH values, by using of a spectrometer. Also, the relationships between the pH values and the intensities of reflected lights are obtained on the basis of the color variations of the pH sol-gel films.

A Design and Implementation Mobile Game Based on Kinect Sensor

  • Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • 제22권9호
    • /
    • pp.73-80
    • /
    • 2017
  • In this paper, we design and implement a mobile game based on Kinect sensor. This game is a motion recognition maze game based on Kinect sensor using XNA Game Studio. The game consists of three stages. Each maze has different size and clear time limit. A player can move to the next stage only if the player finds the exit within a limited time. However, if the exit is not found within the time limit, the game ends. In addition, two kinds of mini games are included in the game. The first game is a fruit catch game using motion recognition tracking of the Kinect sensor, and player have to pick up a certain number of randomly falling fruits. If a player acquire a certain number of fruits at this time, the movement speed of the player is increased. However, if a player takes a skeleton that appears randomly, the movement speed will decrease. The second game is a Quiz game using the speech recognition function of the Kinect sensor, and a question from random genres of common sense, nonsense, ancient creature, capital, constellation, etc. are issued. If a player correctly answers more than 7 of 10 questions, the player gets useful items to use in finding the maze. This item is a navigator fairy that helps the player to escape the forest.

Implicit Surface Representation of Three-Dimensional Face from Kinect Sensor

  • Wibowo, Suryo Adhi;Kim, Eun-Kyeong;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제25권4호
    • /
    • pp.412-417
    • /
    • 2015
  • Kinect sensor has two output data which are produced from red green blue (RGB) sensor and depth sensor, it is called color image and depth map, respectively. Although this device's prices are cheapest than the other devices for three-dimensional (3D) reconstruction, we need extra work for reconstruct a smooth 3D data and also have semantic meaning. It happened because the depth map, which has been produced from depth sensor usually have a coarse and empty value. Consequently, it can be make artifact and holes on the surface, when we reconstruct it to 3D directly. In this paper, we present a method for solving this problem by using implicit surface representation. The key idea for represent implicit surface is by using radial basis function (RBF) and to avoid the trivial solution that the implicit function is zero everywhere, we need to defined on-surface point and off-surface point. Based on our simulation results using captured face as an input, we can produce smooth 3D face and fill the holes on the 3D face surface, since RBF is good for interpolation and holes filling. Modified anisotropic diffusion is used to produced smoothed surface.