• Title/Summary/Keyword: Color Sensing

Search Result 414, Processing Time 0.021 seconds

A Study to Improve the Accuracy of Segmentation and Classification of Mosaic Images over the Korean Peninsula (한반도 모자이크 영상의 분할 및 분류 정확도 향상을 위한 연구)

  • Moon, Jiyoon;Lee, Kwang Jae
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1943-1949
    • /
    • 2021
  • In recent years, as the demand of high-resolution satellite images increases due to the miniaturization and constellation of satellites, various efforts to support users to utilize satellite images more conveniently are performed. Accordingly, the Korea Aerospace Research Institute produces and provides mosaic images on the Korean Peninsula every year to improve the convenience of users in the public sector and activate the use of satellite images. In order to increase the utilization of mosaic images on the Korean Peninsula, a study on satellite image segmentation and classification using mosaic images was attempted. However, since mosaic images provide only R, G, and B bands and processes such as image sharpening and color balancing are applied, there is a limitation that the spectral information of original images is distorted, so various indices were extracted and classified using R, G, and B bands to compensate for this. As a result of the study, the accuracy of image classification results using only mosaic images was about 72%, while the accuracy of image classification results using indices extracted from R, G, and B bands together was about 79%. Through this, it was confirmed that when performing image classification using mosaic images on the Korean Peninsula, the image classification results can be improved if the indices extracted from R, G, and B bands are used together. These research results are expected to be applied not only to mosaic images but also to images in which spectral information is limited or only R, G, and B bands are provided.

The Method for Colorizing SAR Images of Kompsat-5 Using Cycle GAN with Multi-scale Discriminators (다양한 크기의 식별자를 적용한 Cycle GAN을 이용한 다목적실용위성 5호 SAR 영상 색상 구현 방법)

  • Ku, Wonhoe;Chun, Daewon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1415-1425
    • /
    • 2018
  • Kompsat-5 is the first Earth Observation Satellite which is equipped with an SAR in Korea. SAR images are generated by receiving signals reflected from an object by microwaves emitted from a SAR antenna. Because the wavelengths of microwaves are longer than the size of particles in the atmosphere, it can penetrate clouds and fog, and high-resolution images can be obtained without distinction between day and night. However, there is no color information in SAR images. To overcome these limitations of SAR images, colorization of SAR images using Cycle GAN, a deep learning model developed for domain translation, was conducted. Training of Cycle GAN is unstable due to the unsupervised learning based on unpaired dataset. Therefore, we proposed MS Cycle GAN applying multi-scale discriminator to solve the training instability of Cycle GAN and to improve the performance of colorization in this paper. To compare colorization performance of MS Cycle GAN and Cycle GAN, generated images by both models were compared qualitatively and quantitatively. Training Cycle GAN with multi-scale discriminator shows the losses of generators and discriminators are significantly reduced compared to the conventional Cycle GAN, and we identified that generated images by MS Cycle GAN are well-matched with the characteristics of regions such as leaves, rivers, and land.

3D Reconstruction of Pipe-type Underground Facility Based on Stereo Images and Reference Data (스테레오 영상과 기준데이터를 활용한 관로형 지하시설물 3차원 형상 복원)

  • Cheon, Jangwoo;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1515-1526
    • /
    • 2022
  • Image-based 3D reconstruction is to restore the shape and color of real-world objects, and image sensors mounted on mobile platforms are used for positioning and mapping purposes in indoor and outdoor environments. Due to the increase in accidents in underground space, the location accuracy problem of underground spatial information has been raised. Image-based location estimation studies have been conducted with the advantage of being able to determine the 3D location and simultaneously identify internal damage from image data acquired from the inside of pipeline-type underground facilities. In this study, we studied 3D reconstruction based on the images acquired inside the pipe-type underground facility and reference data. An unmanned mobile system equipped with a stereo camera was used to acquire data and image data within a pipe-type underground facility where reference data were placed at the entrance and exit. Using the acquired image and reference data, the pipe-type underground facility is reconstructed to a geo-referenced 3D shape. The accuracy of the 3D reconstruction result was verified by location and length. It was confirmed that the location was determined with an accuracy of 20 to 60 cm and the length was estimated with an accuracy of about 20 cm. Using the image-based 3D reconstruction method, the position and line-shape of the pipe-type underground facility will be effectively updated.

A Study to Improve the Classification Accuracy of Mosaic Image over Korean Peninsula: Using PCA and RGB Indices (한반도 모자이크 영상의 분류 정확도 향상 기법 연구: PCA 기법과 RGB 지수를 활용하여)

  • Moon, Jiyoon;Lee, Kwangjae
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1945-1953
    • /
    • 2022
  • Korea Aerospace Research Institute produces mosaic images of the Korean Peninsula every year to promote the use of satellite images and provides them to users in the public sector. However, since the pan-sharpening and color balancing methodologies are applied during the mosaic image processing, the original spectral information is distorted. In addition, there is a limit to analyze using mosaic images as mosaic images provide only Red, Green and Blue bands excluding Near Infrared (NIR) band. Therefore, in order to compensate for these limitations, this study applied the Principal Component Analysis (PCA) technique and indices extracted from R, G, B bands together for image classification and compared the classification results. As a result of the analysis, the accuracy of the mosaic image classification result was about 67.51%, while the accuracy of the image classification result using both PCA and RGB indices was about 75.86%, confirming that the accuracy of the image classification result can be improved. As a result of comparing the PCA and the RGB indices, the accuracy of the image classification result was about 64.10% and 74.05% respectively. Through this, it was confirmed that the classification accuracy using the RGB indices was higher among the two techniques, and implications were derived that it was important to use high quality reference or supplementary data. In the future, additional indices and techniques are needed to improve the classification and analysis results of mosaic images, and related research is expected to increase the utilization of images that provide only R, G, B or limited spectral information.

Detection of Wildfire Smoke Plumes Using GEMS Images and Machine Learning (GEMS 영상과 기계학습을 이용한 산불 연기 탐지)

  • Jeong, Yemin;Kim, Seoyeon;Kim, Seung-Yeon;Yu, Jeong-Ah;Lee, Dong-Won;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.967-977
    • /
    • 2022
  • The occurrence and intensity of wildfires are increasing with climate change. Emissions from forest fire smoke are recognized as one of the major causes affecting air quality and the greenhouse effect. The use of satellite product and machine learning is essential for detection of forest fire smoke. Until now, research on forest fire smoke detection has had difficulties due to difficulties in cloud identification and vague standards of boundaries. The purpose of this study is to detect forest fire smoke using Level 1 and Level 2 data of Geostationary Environment Monitoring Spectrometer (GEMS), a Korean environmental satellite sensor, and machine learning. In March 2022, the forest fire in Gangwon-do was selected as a case. Smoke pixel classification modeling was performed by producing wildfire smoke label images and inputting GEMS Level 1 and Level 2 data to the random forest model. In the trained model, the importance of input variables is Aerosol Optical Depth (AOD), 380 nm and 340 nm radiance difference, Ultra-Violet Aerosol Index (UVAI), Visible Aerosol Index (VisAI), Single Scattering Albedo (SSA), formaldehyde (HCHO), nitrogen dioxide (NO2), 380 nm radiance, and 340 nm radiance were shown in that order. In addition, in the estimation of the forest fire smoke probability (0 ≤ p ≤ 1) for 2,704 pixels, Mean Bias Error (MBE) is -0.002, Mean Absolute Error (MAE) is 0.026, Root Mean Square Error (RMSE) is 0.087, and Correlation Coefficient (CC) showed an accuracy of 0.981.

Urban Object Classification Using Object Subclass Classification Fusion and Normalized Difference Vegetation Index (객체 서브 클래스 분류 융합과 정규식생지수를 이용한 도심지역 객체 분류)

  • Chul-Soo Ye
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.223-232
    • /
    • 2023
  • A widely used method for monitoring land cover using high-resolution satellite images is to classify the images based on the colors of the objects of interest. In urban areas, not only major objects such as buildings and roads but also vegetation such as trees frequently appear in high-resolution satellite images. However, the colors of vegetation objects often resemble those of other objects such as buildings, roads, and shadows, making it difficult to accurately classify objects based solely on color information. In this study, we propose a method that can accurately classify not only objects with various colors such as buildings but also vegetation objects. The proposed method uses the normalized difference vegetation index (NDVI) image, which is useful for detecting vegetation objects, along with the RGB image and classifies objects into subclasses. The subclass classification results are fused, and the final classification result is generated by combining them with the image segmentation results. In experiments using Compact Advanced Satellite 500-1 imagery, the proposed method, which applies the NDVI and subclass classification together, showed an overall accuracy of 87.42%, while the overall accuracy of the subchannel classification technique without using the NDVI and the subclass classification technique alone were 73.18% and 81.79%, respectively.

A Study on Optical Properties of Red Tide Algal Species (적조 원격탐사 기술 개발을 위한 적조생물의 광특성 연구)

  • Lee, Nu-Ri;Moon, Jeong-Eon;Ahn, Yu-Hwan;Yang, Chan-Su;Yoon, Hong-Joo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.187-191
    • /
    • 2006
  • This research is about the optical characteristics of algae which is collected from Nam-Hae for basic research of red tide remote sensing technique development 21 kinds of red tide organisms were cultivated to investigate optical characteristics of them in the level of laboratory, and chlorophyll specific absorption coefficient $(a^*)$ and backscattering coefficient $(b_b^*)$ are estimated by using spectrophotometer. Absorption spectrums according to species appeared to range from 0.005 to 0.06 $(m^2/mg)$, and the shapes of spectrums were also different. The range of $b_b^*$ appeared to be $10^{-2}\sim10^{-4}m^2/mg$, which had about 100 times differences between species, and the shape of spectrum have significant difference between species. These results will input as an ocean color model input parameter from ocean color.

  • PDF

Atmospheric correction by Spectral Shape Matching Method (SSMM): Accounting for horizontal inhomogeneity of the atmosphere

  • Shanmugam Palanisamy;Ahn Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.341-343
    • /
    • 2006
  • The current spectral shape matching method (SSMM), developed by Ahn and Shanmugam (2004), relies on the assumption that the path radiance resulting from scattered photons due to air molecules and aerosols and possibly direct-reflected light from the air-sea interface is spatially homogeneous over the sub-scene of interest, enabling the retrieval of water-leaving radiances ($L_w$) from the satellite ocean color image data. This assumption remains valid for the clear atmospheric conditions, but when the distribution of aerosol loadings varies dramatically the above postulation of spatial homogeneity will be violated. In this study, we present the second version of SSMM which will take into account the horizontal variations of aerosol loading in the correction of atmospheric effects in SeaWiFS ocean color image data. The new version includes models for the correction of the effects of aerosols and Raleigh particles and a method fur computation of diffuse transmittance ($t_{os}$) as similar to SeaWiFS. We tested this method over the different optical environments and compared its effectiveness with the results of standard atmospheric correction (SAC) algorithm (Gordon and Wang, 1994) and those from in-situ observations. Findings revealed that the SAC algorithm appeared to distort the spectral shape of water-leaving radiance spectra in suspended sediments (SS) and algal bloom dominated-areas and frequently yielded underestimated or often negative values in the lower green and blue part of the electromagnetic spectrum. Retrieval of water-leaving radiances in coastal waters with very high sediments, for instance = > 8g $m^{-3}$, was not possible with the SAC algorithm. As the current SAC algorithm does not include models for the Asian aerosols, the water-leaving radiances over the aerosol-dominated areas could not be retrieved from the image and large errors often resulted from an inappropriate extrapolation of the estimated aerosol radiance from two IR bands to visible spectrum. In contrast to the above results, the new SSMM enabled accurate retrieval of water-leaving radiances in a various range of turbid waters with SS concentrations from 1 to 100 g $m^{-3}$ that closely matched with those from the in-situ observations. Regardless of the spectral band, the RMS error deviation was minimum of 0.003 and maximum of 0.46, in contrast with those of 0.26 and 0.81, respectively, for SAC algorithm. The new SSMM also remove all aerosol effects excluding areas for which the signal-to-noise ratio is much lower than the water signal.

  • PDF

Research for Calibration and Correction of Multi-Spectral Aerial Photographing System(PKNU 3) (다중분광 항공촬영 시스템(PKNU 3) 검정 및 보정에 관한 연구)

  • Lee, Eun Kyung;Choi, Chul Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.143-154
    • /
    • 2004
  • The researchers, who seek geological and environmental information, depend on the remote sensing and aerial photographic datum from various commercial satellites and aircraft. However, the adverse weather conditions and the expensive equipment can restrict that the researcher can collect their data anywhere and any time. To allow for better flexibility, we have developed a compact, a multi-spectral automatic Aerial photographic system(PKNU 2). This system's Multi-spectral camera can catch the visible(RGB) and infrared(NIR) bands($3032{\times}2008$ pixels) image. Visible and infrared bands images were obtained from each camera respectively and produced Color-infrared composite images to be analyzed in the purpose of the environment monitor but that was not very good data. Moreover, it has a demerit that the stereoscopic overlap area is not satisfied with 60% due to the 12s storage time of each data, while it was possible that PKNU 2 system photographed photos of great capacity. Therefore, we have been developing the advanced PKNU 2(PKNU 3) that consists of color-infrared spectral camera can photograph the visible and near infrared bands data using one sensor at once, thermal infrared camera, two of 40 G computers to store images, and MPEG board to compress and transfer data to the computer at the real time and can attach and detach itself to a helicopter. Verification and calibration of each sensor(REDLAKE MS 4000, Raytheon IRPro) were conducted before we took the aerial photographs for obtaining more valuable data. Corrections for the spectral characteristics and radial lens distortions of sensor were carried out.

  • PDF

Detection of Drought Stress in Soybean Plants using RGB-based Vegetation Indices (RGB 작물 생육지수를 활용한 콩 한발 스트레스 판별기술 평가)

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Baek, Jae-Kyeong;Kwon, Dongwon;Ban, Ho-Young;Cho, Jung-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.340-348
    • /
    • 2021
  • Continuous monitoring of RGB (Red, Green, Blue) vegetation indices is important to apply remote sensing technology for the estimation of crop growth. In this study, we evaluated the performance of eight vegetation indices derived from soybean RGB images with various agronomic parameters under drought stress condition. Drought stress influenced the behavior of various RGB vegetation indices related soybean canopy architecture and leaf color. In particular, reported vegetation indices such as ExGR (Excessive green index minus excess red index), Ipca (Principal Component Analysis Index), NGRDI (Normalized Green Red Difference Index), VARI (Visible Atmospherically Resistance Index), SAVI (Soil Adjusted Vegetation Index) were effective tools in obtaining canopy coverage and leaf chlorophyll content in soybean field. In addition, the RGB vegetation indices related to leaf color responded more sensitively to drought stress than those related to canopy coverage. The PLS-DA (Partial Squares-Discriminant Analysis) results showed that the separation of RGB vegetation indices was distinct by drought stress. The results, yet preliminary, display the potential of applying vegetation indices based on RGB images as a tool for monitoring crop environmental stress.