• 제목/요약/키워드: Color Sensing

검색결과 414건 처리시간 0.023초

Ocean Color Monitoring of Coastal Environments in the Asian Waters

  • Tang, Danling;Kawamura, Hiroshi
    • Journal of the korean society of oceanography
    • /
    • 제37권3호
    • /
    • pp.154-159
    • /
    • 2002
  • Satellite remote sensing technology for ocean observation has evolved considerably in these last twenty years. Ocean color is one of the most important parameters of ocean satellite measurements. This paper describes a remote sensing of ocean color data project - Asian I-Lac Project; it also introduces several case studies using satellite images in the Asian waters. The Asian waters are related to about 30 Asian countries, representing about 60% of the world population. The project aims at generating long-term time series images (planned for 10 years from 1996 to 2006) by combining several ocean color satellite data, i.e., ADEOS-I OCTS and SeaWiFS, and some other sensors. Some typical parameters that could be measured include Chlorophyll- a (Chl-a), Colored Dissolved Organic Matter (CDOM), and Suspended Material (SSM). Reprocessed OCTS images display spatial variation of Chl-a, CDOM, and SSM in the Asian waters; a short term variability of phytoplankton blooms was observed in the Gulf of Oman in November 1996 by analyzing OCTS and NOAA sea surface temperature (SST); Chl-a concentrations derived from OCTS and SeaWiFS have also been evaluated in coastal areas of the Taiwan Strait, the Gulf of Thailand, the northeast Arabian Sea, and the Japan Sea. The data system provides scientists with capability of testing or developing ocean color algorithms, and transferring images for their research. We have also analyzed availability of OCTS images. The results demonstrate the potential of long-term time series of satellite ocean color data for research in marine biology, and ocean studies. The case studies show multiple applications of satellite images on monitoring of coastal environments in the Asian Waters.

Landsat 위성자료를 이용한 남해안 적조영역 검출기법에 관한 연구 (A Study on the Detection Method of Red Tide Area in South Coast using Landsat Remote Sensing)

  • 서형수;송인호;이칠우
    • 한국지리정보학회지
    • /
    • 제9권4호
    • /
    • pp.129-141
    • /
    • 2006
  • 인공위성을 이용한 원격탐사 기술의 비약적인 발전과 함께 지리, 해양 정보 등 사회전반에서 사용되는 영상 데이터량이 급속히 증가하고 있다. 따라서 대용량 원격탐사 영상의 해석을 위해서는 육안 검사보다 영상처리 기술을 이용한 자동화 방법이 필요하다. 본 연구에서는 인공위성 원격탐사 영상의 적조영역에 대해 GLCM(Gray Level Co-occurrence Matrix)을 이용하여 질감 정보를 취득하고, 이 데이터로부터 주성분 분석을 통해 적조영역을 자동으로 검출하는 방법에 대해 제안하였다. 기존의 적조영역 검출은 원격탐사 영상의 해색(sea color) 한 가지 특징에 의한 방법이 대부분이었으나 본 연구에서 GLCM의 질감 정보 8가지를 이용해서 2개의 주성분 누적 영상으로 변환시켰다. 연구결과 2개의 주성분 누적 영상의 백분율 분산 값은 90.4%였으며, 이를 해색 한 가지만을 이용한 적조영역 검출방법과 비교했을 때 보다 나은 결과를 나타내었다.

  • PDF

IBM PC VGA용 화상처리 소프트웨어(IMAPRO) (Image Processing Software Package(IMAPRO) for IBM PC VGA)

  • 徐在榮;智光薰
    • 대한원격탐사학회지
    • /
    • 제8권1호
    • /
    • pp.59-69
    • /
    • 1992
  • The IMAPRO sotfware package was mainly focused to provide an algorithm which is capable of displaying various color composite images on IBM PC, VGA(Video Graphic Array) card with no special hardware. It displays the false color images using a low-cost eight-bit place refresh buffer. This produces similar quality to the one obtained from image board with three eight-bit plane. Also, it provides user friendly menu driven method for the user who are not familier with technical knowladge of image processing. It may prove useful for universities, institute and private company where expensive hardware is not available.

Simulation of Remote Sensing Reflectance and Ocean Color Algorithms for High Resolution Ocean Sensor

  • Ahn, Yu-Hwan;Shanmugam, P.;Moon, Jeong-Eon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.103-106
    • /
    • 2003
  • Retrieval of ocean color information from Multispectral Camera (MSC) on KOMPSAT-2 was investigated to study and characterize small-scale biophysical features in the coastal oceans. Prior to the derivation of such information from space-acquired ocean color imageries, the atmospheric effects largely from path and the air-sea interface should be removed from the total signal recorded at the top of the atmosphere (T$_{TOA}$). In this study, the 'path-extraction' is introduced and demonstrated on the TM and SeaWiFS imageries of highly turbid coastal waters of Korea. The algorithms for retrieval of ocean color information were explored from the remote reflectance (R$_{rs}$) in the visible wavebands of MSC. The determination of coefficient (R$^{2}$) for log-transformed data [ N = 500] was 0.90. Similarly, the R$^{2}$ value for log-transformed data [ N = 500] was found to be 0.93.

  • PDF

Validation of Ocean Color Algorithms in the Ulleung Basin, East/Japan Sea

  • Yoo, Sin-Jae;Park, Ji-Soo;Kim, Hyun-Cheol
    • 대한원격탐사학회지
    • /
    • 제16권4호
    • /
    • pp.315-325
    • /
    • 2000
  • Observations were made to validate ocean color algorithms in the Ulleung Basin, East Sea in May 2000. Small scale and meso-scale surveys were conducted for the validation of ocean color products (nLw: normalized water-leaving radiance and chlorophyll concentration). There were discrepancies between SeaWiFS and in situ nLw showing the current aerosol models of standard SeaWiFS processing software are less than adequate (Gordon and Wang, 1994). Applying the standard SeaWiFS in-water algorithm resulted in an overestimation of chlorophyll concentration. This is because that CDOM absorption was higher than the estimated chlorophyll absorption. TSS concentration was also high. Therefore, the study region deviated from Case 1 waters. The source of these materials seems to be the entrainment of coastal water by the Tsushima Warm Current. Study of the bio-optical properties in other season is desirable.

Comparison of CZCS and SeaWiFS Pigments for Merging the Higher Level Ocean Color Data

  • Jeong, Jong-Chul;Yoo, Shin-Jae
    • 대한원격탐사학회지
    • /
    • 제18권5호
    • /
    • pp.299-303
    • /
    • 2002
  • Many ocean color sensors are being operated at present and will be continued to operatein the coming years. However, these ocean color sensors have different spectral bands locations and higher level product algorithms. Thus the continuity of ocean color data from the satellite with different missions will be important for monitoring of oceanographic variation with long term research. In this study, CZCS band and algorithm are compared with OCTS and SeaWiFS algorithm for estimating chlorophyll. Missing bands of OCTS and CZCS for chlorophyll algorithm are estimated by linear-interpolation using SeaWiFS data. We were able to evaluate the effectiveness of the correction methods using linear interpolation method. Surprisingly, linear interpolation gave a better result than those of other bands.

칼라화상 검사 자동화시스템 (Automatic testing system for a color image)

  • 구영모;이노성
    • 산업경영시스템학회지
    • /
    • 제22권49호
    • /
    • pp.135-142
    • /
    • 1999
  • The objective of this paper is to provide an automatic color image testing system capable of synthetically testing a color element like a color tone and a luminance for a color image displayed on the screen, using a CCD camera and a microprocess. The system consists of a CCD camera, a line conveyor, a camera driving part, a remocon, a remote sensing part, a display and a PC including a color vision board and a CPU board. By applying the system to a process, reliability for a testing result can be improved and the absolute criterion to judge a part can be made.

  • PDF

STANDARIZING THE EXTRATERRESTRIAL SOLAR IRRADIANCE SPECTRUM FOR CAL/VAL OF GEOSTATIONARY OCEAN COLOR IMAGER (GOCI)

  • Shanmugam, Palanisamy;Ahn, Yu-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.86-89
    • /
    • 2006
  • Ocean color remote sensing community currently uses the different solar irradiance spectra covering the visible and near-infrared in the calibration/validation and deriving products of ocean color instruments. These spectra derived from single and / or multiple measurements sets or models have significant discrepancies, primarily due to variation of the solar activity and uncertainties in the measurements from various instruments and their different calibration standards. Thus, it is prudent to examine model-to-model differences and select a standard reference spectrum that can be adopted in the future calibration and validation processes, particularly of the first Geostationary Ocean Color Imager (GOCI) onboard its Communication Ocean and Meterological Satellite (COMS) planned to be launched in 2008. From an exhaustive survey that reveals a variety of solar spectra in the literature, only eight spectra are considered here seeing as reference in many remote sensing applications. Several criteria are designed to define the reference spectrum: i.e., minimum spectral range of 350-1200nm, based completely or mostly on direct measurements, possible update of data and less errors. A careful analysis of these spectra reveals that the Thuillier 2004 spectrum seems to be very identical compared to other spectra, primarily because it represents very high spectral resolution and the current state of the art in solar irradiance spectra of exceptionally low uncertainty ${\sim}0.1%.$ This study also suggests use of the Gueymard 2004 spectrum as an alternative for applications of multispectral/multipurpose satellite sensors covering the terrestrial regions of interest, where it provides spectral converge beyond 2400nm of the Thuillier 2004 spectrum. Since the solar-activity induced spectral variation is about less than 0.1% and a large portion of this variability occurs particularly in the ultraviolet portion of the electromagnetic spectrum that is the region of less interest for the ocean color community, we disregard considering this variability in the analysis of solar irradiance spectra, although determine the solar constant 1366.1 $Wm^{-2}$ to be proposed for an improved approximation of the extraterrestrial solar spectrum in the visible and NIR region.

  • PDF

Examination of Cross-calibration Between OSMI and SeaWiFS: Comparison of Ocean Color Products

  • Lee, Sun-Gu;Kim, Yong-Seung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.209-215
    • /
    • 2002
  • Much effort has been made in the radiometric calibration of the ocean scanning multispectral imager (OSMI) since after the successful launch of KOMPSAT-1 in 1999. A series of calibration coefficients for OSMI detectors were obtained in collaboration with the NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary (SIMBIOS) project office. In this study, we compare the OSMI level-2 products (e.g., chlorophyll-a concentration) calculated from the NASA cross-calibration coefficients with the SeaWiFS counterparts. Sample study areas are some of diagonostic data sites recommended by the SIMBIOS working group. We will present the preliminary results of this comparative study.

  • PDF

고내구성 고감도 강산감지기능 초소수성 색소의 특성 및 응용 (Characteristics and Application of the Highly-Durable and Highly-Sensitive Super Hydrophobic Acid-gas Sensing Dye)

  • 김태경;이선애
    • 한국염색가공학회지
    • /
    • 제27권2호
    • /
    • pp.105-112
    • /
    • 2015
  • In order to detect gas phase strong acid on fabrics, a hexyl-substituted monoazo yellow dye, which was the modified form of a conventional pH-indicating dye, Methyl Yellow, was studied in view of acid-gas sensing properties and its fastness. The dye was printed on polypropylene non-wovens for protective coveralls and examined under various conditions of strong acid such as hydrochloric acid. The dye showed color change from yellow to red on exposure to gas phase hydrochloric acid as low concentration as 1~3 ppm very instantly. Considering reuse of the dye-printed non-wovens, the repeatability of color change was tested on the same sample for 50 repeats and 100 days. The acid-gas sensing function was maintained almost the same level of initial performance. The color fastness of the dye on polypropylene non-wovens was very good showing higher than ratings 4 except for 3~4 to rubbing under wet condition.