• Title/Summary/Keyword: Color Models

Search Result 518, Processing Time 0.025 seconds

Shadow and Highlight Invariant Color Models

  • Lee, Ja-Yong;Kang, Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.557-560
    • /
    • 2005
  • The color of objects varies with changes in illuminant color and viewing conditions. As a consequence, color boundaries are influenced by a large variety of imaging variables such as shadows, highlights, illumination, and material changes. Therefore, invariant color models are useful for a large number of applications such as object recognitions, detections, and segmentations. In this paper, we propose invariant color models. These color models are independent of the object geometry, object pose, and illumination. From these color models, color invariant edges are derived. To show the validity of the proposed invariant color models, some examples are given.

  • PDF

Color Prediction of Yarn-dyed Woven Fabrics -Model Evaluation-

  • Chae, Youngjoo;Xin, John;Hua, Tao
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.38 no.3
    • /
    • pp.347-354
    • /
    • 2014
  • The color appearance of a yarn-dyed woven fabric depends on the color of the yarn as well as on the weave structure. Predicting the final color appearance or formulating the recipe is a difficult task, considering the interference of colored yarns and structure variations. In a modern fabric design process, the intended color appearance is attained through a digital color methodology based on numerous color data and color mixing recipes (i.e., color prediction models, accumulated in CAD systems). For successful color reproduction, accurate color prediction models should be devised and equipped for the systems. In this study, the final colors of yarn-dyed woven fabrics were predicted using six geometric-color mixing models (i.e., simple K/S model, log K/S model, D-G model, S-N model, modified S-N model, and W-O model). The color differences between the measured and the predicted colors were calculated to evaluate the accuracy of various color models used for different weave structures. The log K/S model, D-G model, and W-O model were found to be more accurate in color prediction of the woven fabrics used. Among these three models, the W-O model was found to be the best one as it gave the least color difference between the measured and the predicted colors.

Prediction Models for Fabric Color Emotion Factors by Visual Texture Characteristics and Physical Color Properties (직물의 시각적 질감특성과 물리적 색채성질에 의한 색채감성요인 예측모델)

  • Lee, An-Rye;Yi, Eun-Jou
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.9
    • /
    • pp.1567-1580
    • /
    • 2010
  • This study investigates the effects of visual texture on color emotion and establishes prediction models for color emotion by both physical color properties and visual texture characteristics. A variety of fabrics including silk, cotton, and flax were colored by digital textile printing according to chromatic hue and tone combinations that are evaluated in terms of color emotion. Subjective visual texture ratings are also obtained for gray-colored same fabrics to those used in color emotion tests. As a result, fabric clusters by visual texture factors showed significant differences in color emotion factors that are primarily affected by physical color properties. Finally prediction models for color emotion factors by both physical color properties and visual texture clusters were established, which has a potential to be used to explain color emotion according to the visual texture characteristics of fabrics.

Prediction Models for Color Emotion Factors by Visual Texture and Physical Color Properties of Printed Fabrics (직물의 시각적 질감 특성과 물리적 색채 성질에 의한 색채감성요인 예측모델)

  • Lee, An-Rye;Lee, Eun-Ju
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.54-57
    • /
    • 2009
  • This study was aimed to investigate the effects of visual texture on color emotion and to establish prediction models for color emotion by both physical color properties and visual texture characteristics. A variety of fabrics were printed by digital printer according to hue and tone combinations. Subjective sensation was evaluated in terms of visual texture for fabrics printed in gray whereas color emotion for those in chromatically printed. As results, fabric clusters by visual texture showed significant differences in color emotion factors and the differences were clearer for grayish tone fabrics. Prediction models for color emotion factors by both physical color properties and visual texture clusters were proposed as for all fabrics and grayish ones, respectively.

  • PDF

Optimized Structural and Colorimetrical Modeling of Yarn-Dyed Woven Fabrics Based on the Kubelka-Munk Theory (Kubelka-Munk이론에 기반한 사염직물의 최적화된 구조-색채모델링)

  • Chae, Youngjoo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.3
    • /
    • pp.503-515
    • /
    • 2018
  • In this research, the three-dimensional structural and colorimetrical modeling of yarn-dyed woven fabrics was conducted based on the Kubelka-Munk theory (K-M theory) for their accurate color predictions. In the K-M theory for textile color formulation, the absorption and scattering coefficients, denoted K and S, respectively, of a colored fabric are represented using those of the individual colorants or color components used. One-hundred forty woven fabric samples were produced in a wide range of structures and colors using red, yellow, green, and blue yarns. Through the optimization of previous two-dimensional color prediction models by considering the key three-dimensional structural parameters of woven fabrics, three three-dimensional K/S-based color prediction models, that is, linear K/S, linear log K/S, and exponential K/S models, were developed. To evaluate the performance of the three-dimensional color prediction models, the color differences, ${\Delta}L^*$, ${\Delta}C^*$, ${\Delta}h^{\circ}$, and ${\Delta}E_{CMC(2:1)}$, between the predicted and the measured colors of the samples were calculated as error values and then compared with those of previous two-dimensional models. As a result, three-dimensional models have proved to be of substantially higher predictive accuracy than two-dimensional models in all lightness, chroma, and hue predictions with much lower ${\Delta}L^*$, ${\Delta}C^*$, ${\Delta}h^{\circ}$, and the resultant ${\Delta}E_{CMC(2:1)}$ values.

Solar Cell Classification using Gaussian Mixture Models (가우시안 혼합모델을 이용한 솔라셀 색상분류)

  • Ko, Jin-Seok;Rheem, Jae-Yeol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.1-5
    • /
    • 2011
  • In recent years, worldwide production of solar wafers increased rapidly. Therefore, the solar wafer technology in the developed countries already has become an industry, and related industries such as solar wafer manufacturing equipment have developed rapidly. In this paper we propose the color classification method of the polycrystalline solar wafer that needed in manufacturing equipment. The solar wafer produced in the manufacturing process does not have a uniform color. Therefore, the solar wafer panels made with insensitive color uniformity will fall off the aesthetics. Gaussian mixture models (GMM) are among the most statistically mature methods for clustering and we use the Gaussian mixture models for the classification of the polycrystalline solar wafers. In addition, we compare the performance of the color feature vector from various color space for color classification. Experimental results show that the feature vector from YCbCr color space has the most efficient performance and the correct classification rate is 97.4%.

A Study on Application of Illumination Models for Color Constancy of Objects (객체의 색상 항등성을 위한 조명 모델 응용에 관한 연구)

  • Park, Changmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.1
    • /
    • pp.125-133
    • /
    • 2017
  • Color in an image is determined by illuminant and surface reflectance. So, to recover unique color of object, estimation of exact illuminant is needed. In this study, the illumination models suggested to get the object color constancy with the physical illumination model based on physical phenomena. Their characteristics and application limits are presented and the necessity of an extended illumination model is suggested to get more appropriate object colors recovered. The extended illumination model should contain an additional term for the ambient light in order to account for spatial variance of illumination in object images. Its necessity is verified through an experiment under simple lighting environment in this study. Finally, a reconstruction method for recovering input images under standard white light illumination is experimented and an useful method for computing object color reflectivity is suggested and experimented which can be induced from combination of the existing illumination models.

A study on the Transformation from CMYK to $L^{*}a^{*}b^{*}$ color space using color reproduction models (색재현 모델을 이용한 CMYK에서 $L^{*}a^{*}b^{*}$ 색변환에 관한 연구)

  • 차재영;조가람;구철희
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.2
    • /
    • pp.29-40
    • /
    • 2000
  • Recently. color proofing in printing industry grow rapidly. If an order decide color from known color information in the case of color reproduction, we can reduce expenses and time. In color proofing the best important point must be closed proofed color to primary color and secondary color. Model-based approaches have the advantages of faster recharacterization and the opportunity of simulating product enhancements such as changes in ink properties and halftoning. In this paper, we transformed the dot area of CMYK to CIELAB color space using color reproduction models. Firstly, we measured spectral reflectance of primary color printed by Matchprint II and the data was used to find tone reproduction curve using regression equation, and than we applied at primary color model, such as Murray-Davies, Yule-Nilsen, and mixed color model, such as Kubelka-Munk, relaxed version of spectral Neugebauer. In such results, the Kubelka-Munk model resulted in the best spectral reconstruction accuracy followed by relaxed version of spectral Neugebauer model, color difference is 2.8401.

  • PDF

A study on the transfromation from CMYK to Labcolor space using color reproduction models (색재현 모델을 이용한 CMYK to Lab 색변환에 관한 연구)

  • 차재영;구철회
    • Proceedings of the Korean Printing Society Conference
    • /
    • 2000.04a
    • /
    • pp.25-34
    • /
    • 2000
  • Recently, color proofing in printing industry grow rapidly. If an order decide color from known color information in the case of color reproduction, we can reduce expenses and time. In color proofing the best important point must be closed proofed color to primary color and secondary color. Model-based approaches have the advantages of faster recharacterization and the opportunity of simulating product enhancements such as changes in ink properties and halftoning. In this paper, we transformed the dot area of CMYK to CIELAB color space using color reprodution models. Firstly, we measured spectral reflectance of primary color printed by Matchprint II and the data was used to find tone reproduction curve using regression equation, and than we applied at primary color model, such as Murray-Davies, Yule-Nilsen, and mixed color model, such as Kubelka--Munk, relaxed version of spectral Neugebauser. In such results, the Kubleka-Munk model resulted in the best spectral reconstruction accuracy followed by relaxed version of spectral Neugebauer model, color difference is 2.8401.

Fire Detection using Color and Motion Models

  • Lee, Dae-Hyun;Lee, Sang Hwa;Byun, Taeuk;Cho, Nam Ik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.4
    • /
    • pp.237-245
    • /
    • 2017
  • This paper presents a fire detection algorithm using color and motion models from video sequences. The proposed method detects change in color and motion of overall regions for detecting fire, and thus, it can be implemented in both fixed and pan/tilt/zoom (PTZ) cameras. The proposed algorithm consists of three parts. The first part exploits color models of flames and smoke. The candidate regions in the video frames are extracted with the hue-saturation-value (HSV) color model. The second part models the motion information of flames and smoke. Optical flow in the fire candidate region is estimated, and the spatial-temporal distribution of optical flow vectors is analyzed. The final part accumulates the probability of fire in successive video frames, which reduces false-positive errors when fire-like color objects appear. Experimental results from 100 fire videos are shown, where various types of smoke and flames appear in indoor and outdoor environments. According to the experiments and the comparison, the proposed fire detection algorithm works well in various situations, and outperforms the conventional algorithms.