• Title/Summary/Keyword: Color Interpolation

Search Result 137, Processing Time 0.034 seconds

Design and Implementation of an LED Mood Lighting System Using Personalized Color Sequence Generation

  • Jeong, Gu-Min;Yeo, Jong-Yun;Won, Dong Mook;Bae, Sung-Han;Park, Kyung-Joon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3182-3196
    • /
    • 2012
  • In this paper, we present a new LED (Light Emitting Diode) mood lighting system interacting with smartphones based on the generation of different light sequences. In the proposed system, one light sequence is considered to be one unit of the service contents, which is then transmitted through a network and played in an LED lighting system. To this end, we propose a novel generation scheme using a smartphone, and a decoding/playing mechanism in an LED lighting system. The lighting sequences have a fixed period divided into predefined time units. Two modes - basic and interpolation - are supported in each time unit when playing a color sequence. In the basic mode, the color is maintained for the entire time unit, whereas in the interpolation mode the color is interpolated. The sequence is decoded and played in the lighting circuit by changing the duty cycle of a PWM (Pulse Width Modulation) signal. A demonstration system of the overall proposed method was using smartphones, a server and an LED lighting system. The results from this experiment show the validity and applicability of the proposed scheme.

A New Directionally Weighted Demosaicing (방향성을 고려한 새로운 디모자이킹)

  • Jung, Tae-Young;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.1004-1009
    • /
    • 2010
  • ost digital cameras use single sensor array with color filter array to reduce size and cost. However images taken by single sensor array have only one color component per pixel, to obtain a color image missing two color components need to be reconstructed. This reconstructing process is called as demosaicking. This paper propose a new directional demosaicking method and proposed method achieves better image quality with enhanced weighting function. With comparing objective and subjective performance, we show proposed method achieves better performance than the conventional methods.

Color Filter Array Interpolation Algorithm for McMaster Dataset (McMaster Dataset을 위한 색상 보간 알고리듬)

  • Park, Bumjun;Lee, Kyungjun;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.121-124
    • /
    • 2015
  • 본 논문은 Multiscale Gradients (MSG)를 기반으로 한 Color Filter Array Interpolation을 배경으로 Kodak Dataset보다 실제 디지털 카메라로 촬영한 이미지에 가까운 McMaster Dataset에서 개선된 성능을 내는 알고리듬을 제안한다. MSG는 녹색 채널 보간, 녹색 채널 갱신, 빨간색, 파란색 채널 보간의 과정을 거친다. 이때 높은 스펙트럼 상관관계, 낮은 색채도, 낮은 색 경사도를 가진 Kodak Dataset과 달리 자연 이미지에서는 녹색 채널 갱신 과정의 추정방법을 사용하면 화질 및 Color Peak Signal to Noise Ratio (CPSNR)이 저하되는 것을 확인하였다. 이러한 실험결과를 바탕으로 개선된 필터와 색상 보간 과정을 통해 기존의 알고리듬에 비해 향상된 성능을 보여주는 알고리듬을 제안한다.

  • PDF

Color Filter Interpolation Algorithm using Improved filter (개선된 필터를 이용한 색상 보간 알고리듬)

  • Jang, Seokhwan;Park, Bumjun;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.69-72
    • /
    • 2018
  • 본 논문은 Multiscale Gradients (MSG)를 기반으로 한 Color Filter Array Interpolation을 토대로 개선된 필터와 보간 과정의 알고리듬을 제안한다. MSG는 초록색 채널 보간, 초록색 채널 갱신, 빨간색 및 파란색 채널 보간 과정으로 이루어진다. 이때, 더욱 정교한 보간을 위해 필터의 크기를 증가시키고, 보간 과정에 이용되는 주변 픽셀의 개수를 늘렸다. 이러한 실험을 통해 높은 스펙트럼 상관관계, 낮은 채도, 낮은 색 경사도를 가진 Kodak dataset과 자연 영상과 유사한 특성을 갖는 McMaster dataset 모두의 경우에서 Color Peak Signal to Noise Ratio (CPSNR)이 향상되는 것을 확인하였다.

  • PDF

Demosaicing Algorithm and Hardware Implementation with Weighted Directional Filtering for Diagonal Edge (방향성 필터를 이용하여 대각선 에지를 고려한 Demosaicing 알고리즘 및 하드웨어 구현)

  • Kwak, Boo-Dong;Jeong, Hyo-Won;Yang, Jeong-Ju;Jang, Won-Woo;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1581-1588
    • /
    • 2010
  • Most digital cameras use a single image sensor with Color Filter Array(CFA) for the advantage of costs and speed. The various color interpolation(demosaicing) algorithms are researched to reconstruct a full representation of the image. In this paper, we proposed a method of demosaicing about using weighted directional filter for vertical, horizontal, and diagonal direction edge. The method considered the efficiency of hardware resources for hardware implementation. The performance of proposed method was confirmed by comparing the conventional method in experiments using 24 Kodak test images. The proposed method was designed by Verilog HDL and was verified by using Virtex4 FPGA boards and CMOS Image Sensor.

A Study on Real Time Color Gamut Mapping Using Tetrahedral Interpolation (사면체 보간을 이용한 실시간 색역 사상에 관한 연구)

  • Kim, Kyoung-Seok;Kwon, Do-Hyung;Lee, Hak-Sung;Han, Dong-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.56-63
    • /
    • 2007
  • A color gamut mapping has been known to be one of promising methods to enhance display quality of various types of color display device. However, it is required to handle this mapping in real time for display or digital TV application. If carefully arranged, the tetrahedral interpolation can be computed with simpler operations compared to a cubic interpolation in the conventional reduced resolution look-up table which is devised to process the gamut mapping in real time. Based on the tetrahedral interpolation, a new type hardware architecture for real-time gamut mapping is proposed in this paper. The proposed hardware architecture shows better processing speed and reduces the hardware cost.

Effective Demosaicking Algorithm for CFA Images using Directional Interpolation and Nonlocal Means Filtering (방향성 기반 보간법과 비지역 평균 필터링에 의한 효과적인 CFA 영상 디모자이킹 알고리즘)

  • Kim, Jongho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.110-116
    • /
    • 2017
  • This paper presents an effective demosaicking algorithm for color filter array (CFA) images acquired from single-sensor devices based on directional interpolation and nonlocal properties of the image. We interpolate the G channel considering diagonal directions as well as horizontal and vertical directions, using a small number of pixels to reflect local properties of the image. Then, we overcome image degradations, such as zipper effects near edges and false colors, by applying nonlocal means (NLM) filtering to the interpolated pixels. R and B channels are reproduced by using directional interpolation with information of the reconstructed G channel and NLM filtering. Experimental results for various McMaster images with high saturation and color changes show that the proposed algorithm accomplishes high PSNR compared with conventional methods. Moreover, the proposed method demonstrates better subjective quality compared with existing methods in terms of reduction of quality degradation, like false colors, and preservation of the image structures, such as edges and textures.

Area Measurement of Organism Image using Super Sampling and Interpolation (수퍼 샘플링과 보간을 이용한 생물조직 영상의 면적 측정)

  • Choi, Sun-Wan;Yu, Suk-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1150-1159
    • /
    • 2014
  • This paper proposes a method for extracting tissue cells from an organism image by an electron microscope and getting the whole cell number and the area from the cell. In general, the difference between the cell color and the background is used to extract tissue cell. However, there may be a problem when overlapped cells are seen as a single cell. To solve the problem, we split them by using cell size and curvature. This method has a 99% accuracy rate. To measure the cell area, we compute two areas, the inside and boundary of the cell. The inside is simply calculated by the number of pixels. The cell boundary is obtained by applying super sampling, linear interpolation, and cubic spline interpolation. It improves the error rate, 18%, 19%, and 120% respectively, in comparison to the counting method that counts a pixel area as 1.

A Deblurring Algorithm Combined with Edge Directional Color Demosaicing for Reducing Interpolation Artifacts (컬러 보간 에러 감소를 위한 에지 방향성 컬러 보간 방법과 결합된 디블러링 알고리즘)

  • Yoo, Du Sic;Song, Ki Sun;Kang, Moon Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.205-215
    • /
    • 2013
  • In digital imaging system, Bayer pattern is widely used and the observed image is degraded by optical blur during image acquisition process. Generally, demosaicing and deblurring process are separately performed in order to convert a blurred Bayer image to a high resolution color image. However, the demosaicing process often generates visible artifacts such as zipper effect and Moire artifacts when performing interpolation across edge direction in Bayer pattern image. These artifacts are emphasized by the deblurring process. In order to solve this problem, this paper proposes a deblurring algorithm combined with edge directional color demosaicing method. The proposed method is consisted of interpolation step and region classification step. Interpolation and deblurring are simultaneously performed according to horizontal and vertical directions, respectively during the interpolation step. In the region classification step, characteristics of local regions are determined at each pixel position and the directionally obtained values are region adaptively fused. Also, the proposed method uses blur model based on wave optics and deblurring filter is calculated by using estimated characteristics of local regions. The simulation results show that the proposed deblurring algorithm prevents the boosting of artifacts and outperforms conventional approaches in both objective and subjective terms.

등시지각 색 샘플링을 기반한 CIEL*a*b*-CMY 비선형 색변환

  • 오현수;이을환;유미옥;최환언;안석출
    • Proceedings of the Korean Printing Society Conference
    • /
    • 2000.12b
    • /
    • pp.5-10
    • /
    • 2000
  • In case of outputting the image with color printer, image is occurred color distortion by characteristics of paper, effect by overlap between neighbor dots and the mechanical characteristics if printer. Color calibration is needed to reduce this color distrotion. To color calibration, we select the color sample in printer color gamut. The accuracy of color calibration is determined by the number of sample, distribution, and calibration method. Generally, color space is selected the color sample dividing equal interval. In this case, the range of gamut of printed color patches is reduced due to the effect of inks overlap. Therefore, error is occurred when color transformation relatively. In this paper, we have the color sampling based on equi-visual perception and then reproduce the color using the Neural-Network and interpolation by LUT.