• Title/Summary/Keyword: Color Features

Search Result 1,192, Processing Time 0.034 seconds

Extraction of Geometric and Color Features in the Tobacco-leaf by Computer Vision (컴퓨터 시각에 의한 잎담배의 외형 및 색 특징 추출)

  • Cho, H.K.;Song, H.K.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.4
    • /
    • pp.380-396
    • /
    • 1994
  • A personal computer based color machine vision system with video camera and fluorescent lighting system was used to generate images of stationary tobacco leaves. Image processing algorithms were developed to extract both the geometric and the color features of tobacco leaves. Geometric features include area, perimeter, centroid, roundness and complex ratio. Color calibration scheme was developed to convert measured pixel values to the standard color unit using both statistics and artificial neural network algorithm. Improved back propagation algorithm showed less sum of square errors than multiple linear regression. Color features provide not only quality evaluation quantities but the accurate color measurement. Those quality features would be useful in grading tobacco automatically. This system would also be useful in measuring visual features of other agricultural products.

  • PDF

Melon Surface Color and Texture Analysis for Estimation of Soluble Solids Content and Firmness

  • Suh, Sang-Ryong;Lee, Kyeong-Hwan;Yu, Seung-Hwa;Shin, Hwa-Sun;Choi, Young-Soo;Yoo, Soo-Nam
    • Journal of Biosystems Engineering
    • /
    • v.37 no.4
    • /
    • pp.252-257
    • /
    • 2012
  • Purpose: The net rind pattern and color of melon surface are important for a high market value of melon fruits. The development of the net and color are closely related to the changes in shape, size, and maturing. Therefore, the net and color characteristics can be used indicators for assessment of melon quality. The goal of this study was to investigate the possibility of estimating melon soluble solids content (SSC) and firmness by analyzing the net and color characteristics of fruit surface. Methods: The true color images of melon surface obtained at fruit equator were analyzed with 18 color features and 9 texture features. The partial least squares (PLS) method was used to estimate SSC and firmness in melons using their color and texture features. Results: In sensing melon SSC, the coefficients of determination of validation (${R_v}^2$) of the prediction models using the color and texture features were 0.84 (root mean square error of validation, RMSEV: 1.92 $^{\circ}Brix$) and 0.96 (RMSEV: 0.60 $^{\circ}Brix$), respectively. The ${R_v}^2$ values of the models for predicting melon firmness using the color and texture features were 0.64 (RMSEV: 4.62 N) and 0.79 (RMSEV: 2.99 N), respectively. Conclusions: In general, the texture features were more useful for estimating melon internal quality than the color features. However, to strengthen the usefulness of the color and texture features of melon surface for estimation of melon quality, additional experiments with more fruit samples need to be conducted.

Color-Image Guided Depth Map Super-Resolution Based on Iterative Depth Feature Enhancement

  • Lijun Zhao;Ke Wang;Jinjing, Zhang;Jialong Zhang;Anhong Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2068-2082
    • /
    • 2023
  • With the rapid development of deep learning, Depth Map Super-Resolution (DMSR) method has achieved more advanced performances. However, when the upsampling rate is very large, it is difficult to capture the structural consistency between color features and depth features by these DMSR methods. Therefore, we propose a color-image guided DMSR method based on iterative depth feature enhancement. Considering the feature difference between high-quality color features and low-quality depth features, we propose to decompose the depth features into High-Frequency (HF) and Low-Frequency (LF) components. Due to structural homogeneity of depth HF components and HF color features, only HF color features are used to enhance the depth HF features without using the LF color features. Before the HF and LF depth feature decomposition, the LF component of the previous depth decomposition and the updated HF component are combined together. After decomposing and reorganizing recursively-updated features, we combine all the depth LF features with the final updated depth HF features to obtain the enhanced-depth features. Next, the enhanced-depth features are input into the multistage depth map fusion reconstruction block, in which the cross enhancement module is introduced into the reconstruction block to fully mine the spatial correlation of depth map by interleaving various features between different convolution groups. Experimental results can show that the two objective assessments of root mean square error and mean absolute deviation of the proposed method are superior to those of many latest DMSR methods.

Content-based image retrieval using a fusion of global and local features

  • Hee Hyung Bu;Nam Chul Kim;Sung Ho Kim
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.505-517
    • /
    • 2023
  • Color, texture, and shape act as important information for images in human recognition. For content-based image retrieval, many studies have combined color, texture, and shape features to improve the retrieval performance. However, there have not been many powerful methods for combining all color, texture, and shape features. This study proposes a content-based image retrieval method that uses the combined local and global features of color, texture, and shape. The color features are extracted from the color autocorrelogram; the texture features are extracted from the magnitude of a complete local binary pattern and the Gabor local correlation revealing local image characteristics; and the shape features are extracted from singular value decomposition that reflects global image characteristics. In this work, an experiment is performed to compare the proposed method with those that use our partial features and some existing techniques. The results show an average precision that is 19.60% higher than those of existing methods and 9.09% higher than those of recent ones. In conclusion, our proposed method is superior over other methods in terms of retrieval performance.

Merging Features and Optical-NIR Color Gradient of Early-type Galaxies

  • Kim, Du-Ho;Im, Myeong-Sin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.57.1-57.1
    • /
    • 2011
  • It has been suggested that merging plays an important role in the formation and the evolution of early-type galaxies (ETGs). Optical-NIR color gradients of ETGs in high density environments are found to be less steep than those of ETGs in low density environments, hinting frequent merger activities in ETGs in high density environments. In order to examine if the flat color gradients are the result of dry mergers, we studied the relations between merging features, color gradient, and environments of 281 low redshift ETGs selected from Sloan Digital Sky Survey (SDSS) Stripe82. The sample contains 222 relaxed ETGs, 38 ETGs with tidal features, 10 galaxies with dust features and 11 galaxies with tidal and dust features, and Near Infrared (NIR) images are taken from UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). We find that r-K color gradients of field sample galaxies are steeper than those of sample ETGs within cluster environments. For the field sample galaxies, a relatively large number of galaxies with peculiar features contribute to the steeper color gradients, while the absence of these peculiar early-type galaxies make color gradients of the cluster sample galaxies intact. In high density environment, ETGs are already evolved and relaxed, resulting flat color gradients. However, in low density environments, a majority of ETGs undergone merging recently which makes the color gradients steep.

  • PDF

Wear Debris Analysis using the Color Pattern Recognition

  • Chang, Rae-Hyuk;Grigoriev, A.Y.;Yoon, Eui-Sung;Kong, Hosung;Kang, Ki-Hong
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.34-42
    • /
    • 2000
  • A method and results of classification of four different metallic wear debris were presented by using their color features. The color image of wear debris was used far the initial data, and the color properties of the debris were specified by HSI color model. Particles were characterized by a set of statistical features derived from the distribution of HSI color model components. The initial feature set was optimized by a principal component analysis, and multidimensional scaling procedure was used fer the definition of a classification plane. It was found that five features, which include mean values of H and S, median S, skewness of distribution of S and I, allow to distinguish copper based alloys, red and dark iron oxides and steel particles. In this work, a method of probabilistic decision-making of class label assignment was proposed, which was based on the analysis of debris-coordinates distribution in the classification plane. The obtained results demonstrated a good availability for the automated wear particle analysis.

  • PDF

A Study on the Emotional Evaluation of fabric Color Patterns

  • Koo, Hyun-Jin;Kang, Bok-Choon;Um, Jin-Sup;Lee, Joon-Whan
    • Science of Emotion and Sensibility
    • /
    • v.5 no.3
    • /
    • pp.11-20
    • /
    • 2002
  • There are Two new models developed for objective evaluation of fabric color patterns by applying a multiple regression analysis and an adaptive foray-rule-based system. The physical features of fabric color patterns are extracted through digital image processing and the emotional features are collected based on the psychological experiments of Soen[3, 4]. The principle physical features are hue, saturation, intensity and the texture of color patterns. The emotional features arc represented thirteen pairs of adverse adjectives. The multiple regression analyses and the adaptive fuzzy system are used as a tool to analyze the relations between physical and emotional features. As a result, both of the proposed models show competent performance for the approximation and the similar linguistic interpretation to the Soen's psychological experiments.

  • PDF

Feasibility in Grading the Burley Type Dried Tobacco Leaf Using Computer Vision (컴퓨터 시각을 이용한 버얼리종 건조 잎 담배의 등급판별 가능성)

  • 조한근;백국현
    • Journal of Biosystems Engineering
    • /
    • v.22 no.1
    • /
    • pp.30-40
    • /
    • 1997
  • A computer vision system was built to automatically grade the leaf tobacco. A color image processing algorithm was developed to extract shape, color and texture features. An improved back propagation algorithm in an artificial neural network was applied to grade the Burley type dried leaf tobacco. The success rate of grading in three-grade classification(1, 3, 5) was higher than the rate of grading in six-grade classification(1, 2, 3, 4, 5, off), on the average success rate of both the twenty-five local pixel-set and the sixteen local pixel-set. And, the average grading success rate using both shape and color features was higher than the rate using shape, color and texture features. Thus, the texture feature obtained by the spatial gray level dependence method was found not to be important in grading leaf tobacco. Grading according to the shape, color and texture features obtained by machine vision system seemed to be inadequate for replacing manual grading of Burely type dried leaf tobacco.

  • PDF

Image Retrieval Using the Color Feature and the Wavelet-Based Feature (색상특징과 웨이블렛 기반의 특징을 이용한 영상 검색)

  • 박종현;박순영;조완현
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.487-490
    • /
    • 1999
  • In this paper we propose an efficient content-based image retrieval method using the color and wavelet based features. The color features are extracted from color histograms of the global image and the wavelet based features are extracted from the invariant moments of the high-pass band image through the spatial-frequency analysis of the wavelet transform. The proposed algorithm, called color and wavelet features based query(CWBQ), is composed of two-step query operations for efficient image retrieval: the coarse level filtering operation and the fine level matching operation. In the first filtering operation, the color histogram feature is used to filter out the dissimilar images quickly from a large image database. The second matching operation applies the wavelet based feature to the retained set of images to retrieve all relevant images successfully. The experimental results show that the proposed algorithm yields more improved retrieval accuracy with computationally efficiency than the previous methods.

  • PDF

Detection of Facial Features Using Color and Facial Geometry (색 정보와 기하학적 위치관계를 이용한 얼굴 특징점 검출)

  • 정상현;문인혁
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.57-60
    • /
    • 2002
  • Facial features are often used for human computer interface(HCI). This paper proposes a method to detect facial features using color and facial geometry information. Face region is first extracted by using color information, and then the pupils are detected by applying a separability filter and facial geometry constraints. Mouth is also extracted from Cr(coded red) component. Experimental results shows that the proposed detection method is robust to a wide range of facial variation in position, scale, color and gaze.

  • PDF