• Title/Summary/Keyword: Color Detection

Search Result 1,493, Processing Time 0.033 seconds

Human Hand Detection Using Color Vision (컬러 시각을 이용한 사람 손의 검출)

  • Kim, Jun-Yup;Do, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.28-33
    • /
    • 2012
  • The visual sensing of human hands plays an important part in many man-machine interaction/interface systems. Most existing visionbased hand detection techniques depend on the color cues of human skin. The RGB color image from a vision sensor is often transformed to another color space as a preprocessing of hand detection because the color space transformation is assumed to increase the detection accuracy. However, the actual effect of color space transformation has not been well investigated in literature. This paper discusses a comparative evaluation of the pixel classification performance of hand skin detection in four widely used color spaces; RGB, YIQ, HSV, and normalized rgb. The experimental results indicate that using the normalized red-green color values is the most reliable under different backgrounds, lighting conditions, individuals, and hand postures. The nonlinear classification of pixel colors by the use of a multilayer neural network is also proposed to improve the detection accuracy.

Implementation of Effective Automatic Foreground Motion Detection Using Color Information

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.6
    • /
    • pp.131-140
    • /
    • 2017
  • As video equipments such as CCTV are used for various purposes in fields of society, digital video data processing technology such as automatic motion detection is essential. In this paper, we proposed and implemented a more stable and accurate motion detection system based on background subtraction technique. We could improve the accuracy and stability of motion detection over existing methods by efficiently processing color information of digital image data. We divided the procedure of color information processing into each components of color information : brightness component, color component of color information and merge them. We can process each component's characteristics with maximum consideration. Our color information processing provides more efficient color information in motion detection than the existing methods. We improved the success rate of motion detection by our background update process that analyzed the characteristics of the moving background in the natural environment and reflected it to the background image.

Pixel-based Skin Color Detection using the Ratio of H to R in Color Images (컬러 영상에서 HR비를 이용한 화소기반 피부색 검출)

  • Lee Byung Sun;Rhee Eun Joo
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.1
    • /
    • pp.231-239
    • /
    • 2005
  • This paper describes a new algorithm for pixel-based skin color detection to differentiate human form in color images by the ratio of R to H. In order to detect skin color efficiently, we examine the distribution of the R, G and B color elements combining to constitute the skin color in various color images. It shows that R is located in a narrower area than G and B on the RGB color space. And skin color is more related to R than G and B. Meanwhile, when the color image is transformed to the HSI color space, the S is variously changed in accordance with skin colors. The I is changed in accordance with the quantity and angle of light. But the H is less influenced by other conditions except for color. On the basis of the aforementioned study, we propose that the threshold for skin color detection is decided by the ratio of R to H. The proposed method narrows down the range of threshold, detects more skin color and reduces mis-detection of skin color in comparison to detection by R or H. In experimentation. it shows that the proposed algorithm overcomes changes of brightness and color to detect skin color in color images.

  • PDF

Evolutionary Generation Based Color Detection Technique for Object Identification in Degraded Robot Vision (저하된 로봇 비전에서의 물체 인식을 위한 진화적 생성 기반의 컬러 검출 기법)

  • Kim, Kyoungtae;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1040-1046
    • /
    • 2015
  • This paper introduces GP(Genetic Programming) based color detection model for an object detection of humanoid robot vision. Existing color detection methods have used linear/nonlinear transformation of RGB color-model. However, most of cases have difficulties to classify colors satisfactory because of interference of among color channels and susceptibility for illumination variation. Especially, they are outstanding in degraded images from robot vision. To solve these problems, we propose illumination robust and non-parametric multi-colors detection model using evolution of GP. The proposed method is compared to the existing color-models for various environments in robot vision for real humanoid Nao.

High Speed Face Detection Using Skin Color (살색을 이용한 고속 얼굴검출 알고리즘의 개발)

  • 한영신;박동식;이칠기
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.173-176
    • /
    • 2002
  • This paper describes an implementation of fast face detection algorithm. This algorithm can robustly detect human faces with unknown sizes and positions in complex backgrounds. This paper provides a powerful face detection algorithm using skin color segmenting. Skin Color is modeled by a Gaussian distribution in the HSI color space among different persons within the same race, Oriental. The main feature of the Algorithm is achieved face detection robust to illumination changes and a simple adaptive thresholding technique for skin color segmentation is employed to achieve robust face detection.

  • PDF

Fast and Efficient Method for Fire Detection Using Image Processing

  • Celik, Turgay
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.881-890
    • /
    • 2010
  • Conventional fire detection systems use physical sensors to detect fire. Chemical properties of particles in the air are acquired by sensors and are used by conventional fire detection systems to raise an alarm. However, this can also cause false alarms; for example, a person smoking in a room may trigger a typical fire alarm system. In order to manage false alarms of conventional fire detection systems, a computer vision-based fire detection algorithm is proposed in this paper. The proposed fire detection algorithm consists of two main parts: fire color modeling and motion detection. The algorithm can be used in parallel with conventional fire detection systems to reduce false alarms. It can also be deployed as a stand-alone system to detect fire by using video frames acquired through a video acquisition device. A novel fire color model is developed in CIE $L^*a^*b^*$ color space to identify fire pixels. The proposed fire color model is tested with ten diverse video sequences including different types of fire. The experimental results are quite encouraging in terms of correctly classifying fire pixels according to color information only. The overall fire detection system's performance is tested over a benchmark fire video database, and its performance is compared with the state-of-the-art fire detection method.

Detection of Edges in Color Images

  • Ganchimeg, Ganbold;Turbat, Renchin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.6
    • /
    • pp.345-352
    • /
    • 2014
  • Edge detection considers the important technical details of digital image processing. Many edge detection operators already perform edge detection in digital color imaging. In this study, the edge of many real color images that represent the type of digital image was detected using a new operator in the least square approximation method, which is a type of numerical method. The Linear Fitting algorithm is computationally more expensive compared to the Canny, LoG, Sobel, Prewitt, HIS, Fuzzy, Parametric, Synthetic and Vector methods, and Robert' operators. The results showed that the new method can detect an edge in a digital color image with high efficiency compared to standard methods used for edge detection. In addition, the suggested operator is very useful for detecting the edge in a digital color image.

Face Region Detection using a Color Union Model and The Levenberg-Marquadt Algorithm (색상 조합 모델과 LM(Levenberg-Marquadt)알고리즘을 이용한 얼굴 영역 검출)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.14B no.4
    • /
    • pp.255-262
    • /
    • 2007
  • This paper proposes an enhanced skin color-based detection method to find a region of human face in color images. The proposed detection method combines three color spaces, RGB, $YC_bC_r$, YIQ and builds color union histograms of luminance and chrominance components respectively. Combined color union histograms are then fed in to the back-propagation neural network for training and Levenberg-Marquadt algorithm is applied to the iteration process of training. Proposed method with Levenberg-Marquadt algorithm applied to training process of neural network contributes to solve a local minimum problem of back-propagation neural network, one of common methods of training for face detection, and lead to make lower a detection error rate. Further, proposed color-based detection method using combined color union histograms which give emphasis to chrominance components divided from luminance components inputs more confident values at the neural network and shows higher detection accuracy in comparison to the histogram of single color space. The experiments show that these approaches perform a good capability for face region detection, and these are robust to illumination conditions.

Performance of Human Skin Detection in Images According to Color Spaces

  • Kim, Jun-Yup;Do, Yong-Tae
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.153-156
    • /
    • 2005
  • Skin region detection in images is an important process in many computer vision applications targeting humans such as hand gesture recognition and face identification. It usually starts at a pixel-level, and involves a pre-process of color spae transformation followed by a classification process. A color space transformation is assumed to increase separability between skin classes and other classes, to increase similarity among different skin tones, and to bring a robust performance under varying imaging conditions, without any complicated analysis. In this paper, we examine if the color space transformation actually brings those benefits to the problem of skin region detection on a set of human hand images with different postures, backgrounds, people, and illuminations. Our experimental results indicate that color space transfomation affects the skin detection performance. Although the performance depends on camera and surround conditions, normalized [R, G, B] color space may be a good choice in general.

  • PDF

An Efficient Color Edge Detection Using the Mahalanobis Distance

  • Khongkraphan, Kittiya
    • Journal of Information Processing Systems
    • /
    • v.10 no.4
    • /
    • pp.589-601
    • /
    • 2014
  • The performance of edge detection often relies on its ability to correctly determine the dissimilarities of connected pixels. For grayscale images, the dissimilarity of two pixels is estimated by a scalar difference of their intensities and for color images, this is done by using the vector difference (color distance) of the three-color components. The Euclidean distance in the RGB color space typically measures a color distance. However, the RGB space is not suitable for edge detection since its color components do not coincide with the information human perception uses to separate objects from backgrounds. In this paper, we propose a novel method for color edge detection by taking advantage of the HSV color space and the Mahalanobis distance. The HSV space models colors in a manner similar to human perception. The Mahalanobis distance independently considers the hue, saturation, and lightness and gives them different degrees of contribution for the measurement of color distances. Therefore, our method is robust against the change of lightness as compared to previous approaches. Furthermore, we will introduce a noise-resistant technique for determining image gradients. Various experiments on simulated and real-world images show that our approach outperforms several existing methods, especially when the images vary in lightness or are corrupted by noise.