• Title/Summary/Keyword: Color Correction Matrix

Search Result 17, Processing Time 0.024 seconds

3D Image Representation Using Color Correction Matrix According to the CCT of a Display (디스플레이 상관 색온도에 따른 색 보정 매트릭스를 이용한 3D 영상 재생)

  • Song, Inho;Kwon, Hyuk-Ju;Kim, Tae-Kyu;Lee, Sung-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.1
    • /
    • pp.55-61
    • /
    • 2019
  • Almost all 3D displays have a brightness reduction in the 3D mode comparing to the 2D mode. When the brightness is reduced, one of the color attributes, the colorfulness, is decreased. In this case, the viewer feels that the image quality is deteriorated. In this paper, we proposed a method to compensate for the degradation of colorfulness due to brightness reduction in 3D mode for high quality 3D image viewing using the CIECAM02 model and the color correction matrix. As a result of applying the proposed method, we can confirm that the colorfulness is improved in 3D mode.

Color temperature transformation of high dynamic range images

  • Kim, Yoon-Ah;Byun, Seong-Chan;Lee, Byung-Uk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.334-336
    • /
    • 2009
  • Estimation and correction of color temperature of digital images are basis of white balance adjustment after image acquisition stage. White balance is one of the most important image processing techniques for subjective image quality enhancement. Correction of color temperature is applied for white balance adjustment or for changing the mood of a picture. A picture taken under the daylight can be changed to have a mood of sunset or cloudy day, for example. We evaluate color temperature transformation of high dynamic range images in linear and log domain, and we conclude that linear domain transformation shows better results.

  • PDF

Color Correction Method of Non-standard Display Using Standard Color Space (표준 색공간을 이용한 비표준 디스플레이의 색 보정 방법)

  • Kim, Eun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2151-2157
    • /
    • 2015
  • A standard default color space, sRGB, provides compatibility for the transmission of color within the Internet color operating systems and device drivers. However, a display monitor we use generally have non-standard primaries and gamma characteristic different from those specified by sRGB. In this paper, correction methods of chromatic error for a non-standard display monitor are proposed. Experimental results show that the proposed method using the correction matrix reduced chromatic errors at in compared with the non-corrected image's on a non-standard display.

Color Correction Method of CIS Digital Camera for Mobile Phone (휴대폰용 CIS 디지털 카메라의 컬러 보정법)

  • Kim Eun-Su;Jang Soo-Wook;Lee Sung-Hak;Han Chan-Ho;Jung Tae-Young;Sohng Kyu-Ik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.9-18
    • /
    • 2006
  • In the digital camera system, CMOS image sensor (CIS) is widely used because its size and weight become smaller and power consumption becomes lower. However, there are common problems that colors of the recorded image do not match those of the photographed object and that spectral sensitivity of the CIS used in different cameras varies largely in each case. Therefore, color correction is needed because the spectral sensitivity of the CIS in each color is neither the same color component for most standard colors nor the appropriate color representation for any output devices. In the conventional method, a color correction is empirically obtained by a large number of iterative experiments, but the result is not so satisfied. In this paper, a new method to obtain the efficient color correction matrix for digital camera using CIS is proposed. We obtain camera transfer matrix under the certain white-balance point, and color correction matrix that makes the transfer characteristic of digital camera close to the transfer characteristic of ideal camera is obtained. The experimental results show that the transfer characteristic of digital camera by the proposed method is close to that of the ideal camera. In addition, the image quality of pictures of digital camera using the proposed method is dramatically improved.

A New Illumination Compensation Method based on Color Optimization Function for Generating 3D Volumetric Model (3차원 체적 모델의 생성을 위한 색상 최적화 함수 기반의 조명 보상 기법)

  • Park, Byung-Seo;Kim, Kyung-Jin;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.25 no.4
    • /
    • pp.598-608
    • /
    • 2020
  • In this paper, we propose a color correction technique for images acquired through a multi-view camera system for acquiring a 3D model. It is assumed that the 3D volume is captured indoors, and the position and intensity of the light is constant over time. 8 multi-view cameras are used, and converging toward the center of the space, so even if the lighting is constant, the intensity and angle of light entering each camera may be different. Therefore, a color optimization function is applied to a color correction chart taken from all cameras, and a color conversion matrix defining a relationship between the obtained 8 images is calculated. Using this, the images of all cameras are corrected based on the standard color correction chart. This paper proposed a color correction method to minimize the color difference between cameras when acquiring an image using 8 cameras of 3D objects, and experimentally proved that the color difference between images is reduced when it is restored to a 3D image.

Color Correction with Optimized Hardware Implementation of CIE1931 Color Coordinate System Transformation (CIE1931 색좌표계 변환의 최적화된 하드웨어 구현을 통한 색상 보정)

  • Kim, Dae-Woon;Kang, Bong-Soon
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.10-14
    • /
    • 2021
  • This paper presents a hardware that improves the complexity of the CIE1931 color coordinate algorithm operation. The conventional algorithm has disadvantage of growing hardware due to 4-Split Multiply operations used to calculate large bits in the computation process. But the proposed algorithm pre-calculates the defined R2X, X2R Matrix operations of the conventional algorithm and makes them a matrix. By applying the matrix to the images and improving the color, it is possible to reduce the amount of computation and hardware size. By comparing the results of Xilinx synthesis of hardware designed with Verilog, we can check the performance for real-time processing in 4K environments with reduced hardware resources. Furthermore, this paper validates the hardware mount behavior by presenting the execution results of the FPGA board.

Implementation on the Urine Analysis System using Color Correction and Chromaticity Coordinates Transform Methods (색 보정 및 색 좌표 변환 기법을 이용한 요분석 시스템의 구현)

  • 김기련;예수영;손정만;김철한;정도운;이승진;장용훈;전계록
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.183-192
    • /
    • 2003
  • A transformation methode of the chromaticity coordinates was proposed to calibrate the measured data obtained by a urine analysis system which implemented in our previous study. Generally. the reacted color of a reagent strip by urine analysis system often exhibit the color distortions due to nonlinear characteristics of the various devices that is the optic module mechanism. hardware, and surround circumstance. A color correction method for minimizing the color distortion play a few role in maintaining high accuracy and reproduction of the urine analysis system. In this work, we used the compensation method such as the shading correction, the characteristic curve extraction of RGB color by means of third order spline interpolation, and linear transformation using a reference color. In addition, 1931 CIE XYZ color space was used to compensate the color of the measured data by a standard reference system as colorimeter. A compensation matrix was obtained so that the output values of the urine analysis system is nearly equal to that of a standard reference system for identical color sample. Color correction obtained by a urine analysis system which implemented in our previous study exhibited a good color accuracy when it was compared with the reference data. Observed result from an experiments on ten items or a urinalysis strip that color difference or between two urine analysis system was 1.28.

A study of correction dependent on process parameters for printing on a three-dimensional surface (3차원 곡면에 정밀 인쇄를 위한 공정 변수에 따른 이미지 보정에 관한 연구)

  • Song Min Sup;Kim Hyo Chan;Lee Sang Ho;Yang Dong Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.181-190
    • /
    • 2006
  • In the industry, three-dimensional coloring has been needed for a realistic prototype. The Z-corporation developed a 3D printer which provides a three-dimensional colored prototype. However, the process cannot be adopted to models fabricated by other rapid prototyping processes. In addition, time and cost for manufacturing colored prototypes still remain to be improved. In this study, a new coloring process using an ink-jet head is proposed for color printing on a three-dimensional surface. Process parameters such as the angle and the distance between the ink-jet nozzle and the three-dimensional surface should be investigated through experiments. In order to minimize the distortion of a 2D image, the correction matrix according to the sloped angle is proposed and obtained by analysis of printing errors. An image on the doubly curved surface is printed so as to verify the proposed method. As a practical example, a helmet is chosen for printing images on the curved surface. The practical applicability of the correction matrix is then demonstrated by printing the character images on the surface of the helmet.

Quality Enhancement of 3D Volumetric Contents Based on 6DoF for 5G Telepresence Service

  • Byung-Seo Park;Woosuk Kim;Jin-Kyum Kim;Dong-Wook Kim;Young-Ho Seo
    • Journal of Web Engineering
    • /
    • v.21 no.3
    • /
    • pp.729-750
    • /
    • 2022
  • In general, the importance of 6DoF (degree of freedom) 3D (dimension) volumetric contents technology is emerging in 5G (generation) telepresence service, Web-based (WebGL) graphics, computer vision, robotics, and next-generation augmented reality. Since it is possible to acquire RGB images and depth images in real-time through depth sensors that use various depth acquisition methods such as time of flight (ToF) and lidar, many changes have been made in object detection, tracking, and recognition research. In this paper, we propose a method to improve the quality of 3D models for 5G telepresence by processing images acquired through depth and RGB cameras on a multi-view camera system. In this paper, the quality is improved in two major ways. The first concerns the shape of the 3D model. A method of removing noise outside the object by applying a mask obtained from a color image and a combined filtering operation to obtain the difference in depth information between pixels inside the object were proposed. Second, we propose an illumination compensation method for images acquired through a multi-view camera system for photo-realistic 3D model generation. It is assumed that the three-dimensional volumetric shooting is done indoors, and the location and intensity of illumination according to time are constant. Since the multi-view camera uses a total of 8 pairs and converges toward the center of space, the intensity and angle of light incident on each camera are different even if the illumination is constant. Therefore, all cameras take a color correction chart and use a color optimization function to obtain a color conversion matrix that defines the relationship between the eight acquired images. Using this, the image input from all cameras is corrected based on the color correction chart. It was confirmed that the quality of the 3D model could be improved by effectively removing noise due to the proposed method when acquiring images of a 3D volumetric object using eight cameras. It has been experimentally proven that the color difference between images is reduced.

Efficient Method for Recovering Spectral Reflectance Using Spectrum Characteristic Matrix (스펙트럼 특성행렬을 이용한 효율적인 반사 스펙트럼 복원 방법)

  • Sim, Kyudong;Park, Jong-Il
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.12
    • /
    • pp.1439-1444
    • /
    • 2015
  • Measuring spectral reflectance can be regarded as obtaining inherent color parameters, and spectral reflectance has been used in image processing. Model-based spectrum recovering, one of the method for obtaining spectral reflectance, uses ordinary camera with multiple illuminations. Conventional model-based methods allow to recover spectral reflectance efficiently by using only a few parameters, however it requires some parameters such as power spectrum of illuminations and spectrum sensitivity of camera. In this paper, we propose an enhanced model-based spectrum recovering method without pre-measured parameters: power spectrum of illuminations and spectrum sensitivity of camera. Instead of measuring each parameters, spectral reflectance can be efficiently recovered by estimating and using the spectrum characteristic matrix which contains spectrum parameters: basis function, power spectrum of illumination, and spectrum sensitivity of camera. The spectrum characteristic matrix can be easily estimated using captured images from scenes with color checker under multiple illuminations. Additionally, we suggest fast recovering method preserving positive constraint of spectrum by nonnegative basis function of spectral reflectance. Results of our method showed accurately reconstructed spectral reflectance and fast constrained estimation with unmeasured camera and illumination. As our method could be conducted conveniently, measuring spectral reflectance is expected to be widely used.