• Title/Summary/Keyword: Colon cancer cells

Search Result 549, Processing Time 0.022 seconds

Apoptotic Effects of Curcumin and EGCG via Akt-p53 Signaling Pathway in HCT116 Colon Cancer Cells (HCT116 대장암 세포에서 Akt-p53 신호경로를 통한 커큐민과 EGCG의 apoptosis 효과)

  • Park, Song-Yi;Lee, Sol-Hwa;Park, Ock-Jin;Kim, Young-Min
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.89-95
    • /
    • 2011
  • p53 is tumor suppressor gene that regulates apoptosis such as caspase-dependent and p21-mediated signaling pathways. PI3K/Akt is known to be over-activated in cancer cells. Akt activates many survival-related signals such as mTOR and COX-2. Inactivation of Akt would result in non-inhibition of p53 as well as induced apoptosis. In this study, we showed that curcumin and EGCG activate p53 via inhibition of the Akt signaling pathway. Treatments using curcumin and EGCG in different concentrations for 24 hr and 48 hr inhibited proliferation of HCT116 colon cancer cells and increased apoptotic cell death. Also, our data showed that curcumin and EGCG increased the p53 expression and decreased the p-Akt. Treatment of LY294002 (Akt inhibitor) resulted in decreased cell proliferation of cancer cells, while LY294002 treated with curcumin or EGCG showed a greater decrease of cell proliferation. In addition, inhibition of Akt induced p53 activation in HCT116 colon cancer cells. These results suggest that curcumin and EGCG induce apoptosis by inhibiting Akt and increase p53 in HCT116 colon cancer cells.

Effect of Anemarrhenae Rhizoma Ethanol Extract on Apoptosis Induction of HT-29 Human Colon Cancer Cells (지모(知母)에탄올추출물의 HT-29대장암세포 Apoptosis 유도효과)

  • Kim, Tae-Hyun;Kim, Pom-Ho;Jeon, Byoung-Kook;Yoon, Jeong-Rock;Woo, Won-Hong;Mun, Yeun-Ja;Lee, Jang-Cheon;Lee, Boo-Kyun;Park, oung-Gue;Lim, Kyu-Sang
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.24 no.1
    • /
    • pp.16-24
    • /
    • 2011
  • Objective : In this study, we investigated the effects of ethanol extract of Anemarrhenae Rhizoma (EAR) on the proliferation and apoptosis induction of HT-29 human colon cancer cells. Methods : Cell viability of HT-29 cells were measured by MTT assay and apoptisis-related proteins were assessed using western blotting. Chromatin condensation of HT-29 cells stained with Hoechst 33258. Results : In the present study, we demonstrated that EAR exhibited significant cytotoxicity in HT-29 cells. The induction of apoptosis in HT-29 cells by EAR treatment was characterized by chromatin condensation and the activation of caspase-3. EAR-induced apoptosis is accompanied by the release of cytochrome c and the specific proteolytic cleavage of PARP. EAR was appeared cytotoxic effect to HT-29 cells in a dose-dependent manner. Concomitantly, EAR treatment led to increase in the caspase-9. The reduction of Bcl-2 and truncation of Bid were induced by EAR. Conclusion : We studied that the EAR induced apoptosis in human colon adenocarcinoma HT-29 cells. These results indicated that EAR can cause apoptosis through mitochondria/caspase pathway in human HT-29 cells.

Pathological Implications of Cx43 Down-regulation in Human Colon Cancer

  • Ismail, Rehana;Rashid, Rabiya;Andrabi, Khurshid;Parray, Fazl Q.;Besina, Syed;Shah, Mohd Amin;Hussain, Mahboob Ul
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.2987-2991
    • /
    • 2014
  • Connexin 43 is an important gap junction protein in vertebrates and is known for its tumor suppressive properties. Cx43 is abundantly expressed in the human intestinal epithelial cells and muscularis mucosae. To explore the role of Cx43 in the genesis of human colon cancer, we performed the expression analysis of Cx43 in 80 cases of histopathologically confirmed and clinically diagnosed human colon cancer samples and adjacent control tissue and assessed correlations with clinicopathological variables. Western blotting using anti-Cx43 antibody indicated that the expression of Cx43 was significantly down regulated (75%) in the cancer samples as compared to the adjacent control samples. Moreover, immunohistochemical analysis of the tissue samples confirmed the down regulation of the Cx43 in the intestinal epithelial cells. Cx43 down regulation showed significant association (p<0.05) with the histological type and tumor invasion properties of the cancer. Our data demonstrated that loss of Cx43 may be an important event in colon carcinogenesis and tumor progression, providing significant insights about the tumor suppressive properties of the Cx43 and its potential as a diagnostic marker for colon cancer.

Natural Compound Shikonin Induces Apoptosis and Attenuates Epithelial to Mesenchymal Transition in Radiation-Resistant Human Colon Cancer Cells

  • Shilnikova, Kristina;Piao, Mei Jing;Kang, Kyoung Ah;Fernando, Pincha Devage Sameera Madushan;Herath, Herath Mudiyanselage Udari Lakmini;Cho, Suk Ju;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.137-144
    • /
    • 2022
  • Radiation resistance represents an imperative obstacle in the treatment of patients with colorectal cancer, which remains difficult to overcome. Here, we explored the anti-proliferative and migration-inhibiting properties of the natural product shikonin on a radiation-resistant human colon carcinoma cell line (SNU-C5RR). Shikonin reduced the viability of these cells in a dose-dependent manner; 38 µM of shikonin was determined as the half-maximal inhibitory concentration. Shikonin induced apoptotic cell death, as demonstrated by increased apoptotic body formation and the number of TUNEL-positive cells. Moreover, shikonin enhanced mitochondrial membrane depolarization and Bax expression and also decreased Bcl-2 expression with translocation of cytochrome c from mitochondria into the cytosol. In addition, shikonin activated mitogen-activated protein kinases, and their specific inhibitors reduced the cytotoxic effects of shikonin. Additionally, shikonin decreased the migration of SNU-C5RR cells via the upregulation of E-cadherin and downregulation of N-cadherin. Taken together, these results suggest that shikonin induces mitochondria-mediated apoptosis and attenuates epithelial-mesenchymal transition in SNU-C5RR cells.

Effects of Purple Kohlrabi (Brassica oleracea var. gongylodes) Flesh and Peel Ethanol Extracts on the Antioxidant Activity and Antiproliferation of Human Cancer Cells (자색 콜라비 가식부와 껍질 에탄올 추출물의 항산화 활성 및 암세포 증식 억제효과)

  • Yang, Myung-Ja;Cha, Seon-Suk;Lee, Jae-Joon
    • The Korean Journal of Community Living Science
    • /
    • v.26 no.2
    • /
    • pp.405-414
    • /
    • 2015
  • This study examines the effects of purple Kohlrabi fresh and peel ethanol extracts on the antioxidative activity and antiproliferation of human cancer cells (Hep G2 human liver, HCT-116 human colon, and A549 human lung cancer cells.) The total flavonoid and anthocyanin content of purple Kohlrabi ethanol extracts were much greater in the peel than in the flesh. The DPPH radical scavenging activity and antioxidative index of purple Kohlrabi peel extracts were similar to those of the BHA and the BHT. Antiproliferation effects of purple Kohlrabi peel extracts on human cancer cells (Hep G2, HCT-116, and A549) strengthened in a dose-dependent manner. In particular, the antiproliferation activity of purple Kohlrabi peel extracts exceeded 40% in colon cancer cells. These results indicate that the purple Kohlrabi peel may contain bioactive compounds such as flavonoids as well as anthocyanin and that these compounds may facilitate cancer prevention.

Ochnaflavone, a Natural Biflavonoid, Induces Cell Cycle Arrest and Apoptosis in HCT-15 Human Colon Cancer Cells

  • Kang, You-Jin;Min, Hye-Young;Hong, Ji-Young;Kim, Yeong-Shik;Kang, Sam-Sik;Lee, Sang-Kook
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.282-287
    • /
    • 2009
  • Ochnaflavone is a natural biflavonoid and mainly found in the caulis of Lonicera japonica (Caprifoliaceae). Biological activities such as anti-inflammatory and anti-atherogenic effects have been previously reported. The anticancer activity of ochnaflavone, however, has been poorly elucidated yet. In the present study, we investigated the effect of ochnaflavone on the growth inhibitory activity in cultured human colon cancer cell line HCT-15. Ochnaflavone inhibited the proliferation of the cancer cells with an $IC_{50}$ value of $4.1{\mu}M$. Flow cytometric analysis showed that ochnaflavone arrested cell cycle progression in the G2/M phase, and induced the increase of sub-G1 peak in a concentration-dependent manner. Induction of cell cycle arrest was correlated with the modulation of the expression of cell cycle regulating proteins including cdc2 (Tyr15), cyclin A, cyclin B1 and cyclin E. The increase of sub-G1 peak by the higher concentrations of ochnaflavone (over $20{\mu}M$) was closely related to the induction of apoptosis, which was evidenced by the induction of DNA fragmentation, activation of caspase-3, -8 and -9, and cleavage of poly-(ADP-ribose) polymerase. These findings suggest that the cell cycle arrest and induction of apoptosis might be one possible mechanism of actions for the anti-proliferative activity of ochnaflavone in human colon cancer cells.

Emodin-Provoked Oxidative Stress Induces Apoptosis in Human Colon Cancer HCT116 Cells through a p53-Mitochondrial Apoptotic Pathway

  • Xie, Mei-Juan;Ma, Yi-Hua;Miao, Lin;Wang, Yan;Wang, Hai-Zhen;Xing, Ying-Ying;Xi, Tao;Lu, Yuan-Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5201-5205
    • /
    • 2014
  • Emodin, a natural anthraquinone isolated from the traditional Chinese medicine Radix rhizoma Rhei, can induce apoptosis in many kinds of cancer cells. This study demonstrated that emodin induces apoptosis in human colon cancer HCT116 cells by provoking oxidative stress, which subsequently triggers a p53-mitochondrial apoptotic pathway. Emodin induced mitochondrial transmembrane potential loss, increase in Bax and decrease in Bcl-2 expression and mitochondrial translocation and release of cytochrome c to cytosol in HCT116 cells. In response to emodin-treatment, ROS increased rapidly, and subsequently p53 was overexpressed. Pretreatment with the antioxidant NAC diminished apoptosis and p53 overexpression induced by emodin. Transfecting p53 siRNA also attenuated apoptosis induced by emodin, Bax expression and mitochondrial translocation being reduced compared to treatment with emodin alone. Taken together, these results indicate that ROS is a trigger of emodin-induced apoptosis in HCT116 cells, and p53 expression increases under oxidative stress, leading to Bax-mediated mitochondrial apoptosis.

Comparison of Antioxidant and Anti-colon Cancer Activities of Red Cabbage (Brassica oleracea) by Microwave Cooking (전자레인지 조리에 의한 적양배추의 항산화력 및 대장암세포 증식억제)

  • Guon, Tae-Eun;Chung, Ha Sook
    • Korean journal of food and cookery science
    • /
    • v.31 no.1
    • /
    • pp.91-97
    • /
    • 2015
  • The present study was performed to investigate antioxidant and anti-colon cancer activities of red cabbage (Brassica oleracea L. var. capitata f. rubra DC) according to the cooking conditions (raw, microwave, blanching and steaming). The contents of red cabbage extracts were determined as follow: total phenolic contents, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis-(3-ethy lbenzo-thiazoline-6-sulfonic acid) (ABTS), 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, western blot analysis. The total contents of polyphenol and flavonoid of red cabbage were 20.27 mg GAE/g Dry weight ${\pm}0.03$ and $2.55{\pm}0.02mg$ RE/g Dry weight. In this study, the total contents of polyphenol were decreased to both microwave and steam cooking. Total antioxidant activity and growth inhibition of HCT116 human colon cancer cells were in the order of raw > microwaving > steaming cooking methods. These results indicate that red cabbage extracts might have antioxidant and anti-proliferative activity according to the cooking conditions.

Mechanism of Chemoprevention against Colon Cancer Cells Using Combined Gelam Honey and Ginger Extract via mTOR and Wnt/β-catenin Pathways

  • Wee, Lee Heng;Morad, Noor Azian;Aan, Goon Jo;Makpol, Suzana;Ngah, Wan Zurinah Wan;Yusof, Yasmin Anum Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.15
    • /
    • pp.6549-6556
    • /
    • 2015
  • The PI3K-Akt-mTOR, $Wnt/{\beta}$-catenin and apoptosis signaling pathways have been shown to be involved in genesis of colorectal cancer (CRC). The aim of this study was to elucidate whether combination of Gelam honey and ginger might have chemopreventive properties in HT29 colon cancer cells by modulating the mTOR, $Wnt/{\beta}$-catenin and apoptosis signaling pathways. Treatment with Gelam honey and ginger reduced the viability of the HT29 cells dose dependently with $IC_{50}$ values of 88 mg/ml and 2.15 mg/ml respectively, their while the combined treatment of 2 mg/ml of ginger with 31 mg/ml of Gelam honey inhibited growth of most HT29 cells. Gelam honey, ginger and combination induced apoptosis in a dose dependent manner with the combined treatment exhibiting the highest apoptosis rate. The combined treatment downregulated the gene expressions of Akt, mTOR, Raptor, Rictor, ${\beta}$-catenin, $Gsk3{\beta}$, Tcf4 and cyclin D1 while cytochrome C and caspase 3 genes were shown to be upregulated. In conclusion, the combination of Gelam honey and ginger may serve as a potential therapy in the treatment of colorectal cancer through inhibiton of mTOR, $Wnt/{\beta}$ catenin signaling pathways and induction of apoptosis pathway.