DOI QR코드

DOI QR Code

Emodin-Provoked Oxidative Stress Induces Apoptosis in Human Colon Cancer HCT116 Cells through a p53-Mitochondrial Apoptotic Pathway

  • Xie, Mei-Juan (State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University) ;
  • Ma, Yi-Hua (State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University) ;
  • Miao, Lin (State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University) ;
  • Wang, Yan (State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University) ;
  • Wang, Hai-Zhen (State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University) ;
  • Xing, Ying-Ying (State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University) ;
  • Xi, Tao (State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University) ;
  • Lu, Yuan-Yuan (State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University)
  • Published : 2014.07.15

Abstract

Emodin, a natural anthraquinone isolated from the traditional Chinese medicine Radix rhizoma Rhei, can induce apoptosis in many kinds of cancer cells. This study demonstrated that emodin induces apoptosis in human colon cancer HCT116 cells by provoking oxidative stress, which subsequently triggers a p53-mitochondrial apoptotic pathway. Emodin induced mitochondrial transmembrane potential loss, increase in Bax and decrease in Bcl-2 expression and mitochondrial translocation and release of cytochrome c to cytosol in HCT116 cells. In response to emodin-treatment, ROS increased rapidly, and subsequently p53 was overexpressed. Pretreatment with the antioxidant NAC diminished apoptosis and p53 overexpression induced by emodin. Transfecting p53 siRNA also attenuated apoptosis induced by emodin, Bax expression and mitochondrial translocation being reduced compared to treatment with emodin alone. Taken together, these results indicate that ROS is a trigger of emodin-induced apoptosis in HCT116 cells, and p53 expression increases under oxidative stress, leading to Bax-mediated mitochondrial apoptosis.

Keywords

References

  1. Antonsson B, Conti F, Ciavatta A, et al (1997). Inhibition of Bax channel-forming activity by Bcl-2. Science, 277, 370-2. https://doi.org/10.1126/science.277.5324.370
  2. Chipuk JE, Kuwana T, Bouchier-Hayes L, et al (2004). Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science, 303, 1010-4. https://doi.org/10.1126/science.1092734
  3. China Pharmacopoeia Committee (2010). Traditional Chinese Patent Medicines and Simple Preparations. in Pharmacopoeia of the People's Republic of China, Eds C. P. Committee. China Chemical Industry Press. Beijing.
  4. Dejean LM, Martinez-Caballero S, Guo L, et al (2005). Oligomeric Bax is a component of the putative cytochrome c release channel MAC, mitochondrial apoptosis-induced channel. Mol Biol Cell, 16, 2424-32. https://doi.org/10.1091/mbc.E04-12-1111
  5. Green DR, Reed JC (1998). Mitochondria and apoptosis. Science, 281, 1309-12. https://doi.org/10.1126/science.281.5381.1309
  6. Guo Z, Kozlov S, Lavin MF, et al (2010). ATM activation by oxidative stress. Science, 330, 517-21. https://doi.org/10.1126/science.1192912
  7. Hassan ZK, Elamin MH, Omer SA, et al (2013). Oleuropein induces apoptosis via the p53 pathway in breast cancer cells. Asian Pac J Cancer Prev, 14, 6739-42. https://doi.org/10.7314/APJCP.2013.14.11.6739
  8. He L, Bi J-J, Guo Q, et al (2012). Effects of emodin extracted from Chinese herbs on proliferation of non-small cell lung cancer and underlying mechanisms. Asian Pac J Cancer Prev, 13, 1505-10. https://doi.org/10.7314/APJCP.2012.13.4.1505
  9. Huang FJ, Hsuuw YD, Chan WH (2013). Characterization of Apoptosis Induced by Emodin and Related Regulatory Mechanisms in Human Neuroblastoma Cells. Int J Mol Sci, 14, 20139-56. https://doi.org/10.3390/ijms141020139
  10. Huang J, Yang J, Maity B, et al (2011). Regulator of G protein signaling 6 mediates doxorubicin-induced ATM and p53 activation by a reactive oxygen species.dependent mechanism. Cancer Res, 71, 6310-9. https://doi.org/10.1158/0008-5472.CAN-10-3397
  11. International Agency for Research on Cancer (2014a). Cancer Fact Sheets. in Globocan2012 Estimated Incidence, Mortality and Prevalence Worldwide in 2012, DOI: http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx.
  12. International Agency for Research on Cancer (2014b). population Fact Sheets. in Globocan2012 Estimated Incidence, Mortality and Prevalence Worldwide in 2012, DOI: http://globocan.iarc.fr/Pages/fact_sheets_population.aspx.
  13. Kinnally KW, Antonsson B (2007). A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis, 12, 857-68. https://doi.org/10.1007/s10495-007-0722-z
  14. Lai JM, Chang JT, Wen CL, Hsu SL (2009). Emodin induces a reactive oxygen species-dependent and ATM-p53-Bax mediated cytotoxicity in lung cancer cells. Eur J Pharmacol, 623, 1-9. https://doi.org/10.1016/j.ejphar.2009.08.031
  15. Lin JG, Chen GW, Li TM, et al (2006). Aloe-emodin induces apoptosis in T24 human bladder cancer cells through the p53 dependent apoptotic pathway. J Urol, 175, 343-7. https://doi.org/10.1016/S0022-5347(05)00005-4
  16. Lin S-Z, Wei W-T, Chen H, et al (2012). Antitumor activity of emodin against pancreatic cancer depends on its dual role: promotion of apoptosis and suppression of angiogenesis. PloS One, 7, 42146. https://doi.org/10.1371/journal.pone.0042146
  17. Lin SY, Lai WW, Ho CC, et al (2009). Emodin induces apoptosis of human tongue squamous cancer SCC-4 Cells through reactive oxygen species and mitochondria-dependent pathways. Anticancer Res, 29, 327-35.
  18. Lu YY, Zhang JL, Qian JM (2008). The effect of emodin on VEGF receptors in human colon cancer cells. Cancer Biother Radio, 23, 222-8. https://doi.org/10.1089/cbr.2007.0425
  19. Ma YS, Weng SW, Lin MW, et al (2012). Antitumor effects of emodin on LS1034 human colon cancer cells in vitro and in vivo: Roles of apoptotic cell death and LS1034 tumor xenografts model. Food Chem Toxicol, 50, 1271-8. https://doi.org/10.1016/j.fct.2012.01.033
  20. Manu KA, Shanmugam MK, Ong TH, et al (2013). Emodin suppresses migration and invasion through the modulation of CXCR4 expression in an orthotopic model of human hepatocellular carcinoma. PLoS One, 8, 57015. https://doi.org/10.1371/journal.pone.0057015
  21. Murphy RC, Schneider E, Kinnally KW (2001). Overexpression of Bcl-2 suppresses the calcium activation of a mitochondrial megachannel. FEBS Lett, 497, 73-6. https://doi.org/10.1016/S0014-5793(01)02440-1
  22. Pelicano H, Carney D, Huang P (2004). ROS stress in cancer cells and therapeutic implications. Drug Resist Updat, 7, 97-110. https://doi.org/10.1016/j.drup.2004.01.004
  23. Petit PX, Susin SA, Zamzami N, et al (1996). Mitochondria and programmed cell death: back to the future. FEBS Lett, 396, 7-13. https://doi.org/10.1016/0014-5793(96)00988-X
  24. Rengarajan T, Nandakumar N, Rajendran P, et al (2014). D-Pinitol promotes apoptosis in MCF-7 cells via induction of p53 and Bax and inhibition of Bcl-2 and NF-kappa B. Asian Pac J Cancer Prev, 15, 1757-62. https://doi.org/10.7314/APJCP.2014.15.4.1757
  25. Su Y-T, Chang H-L, Shyue S-K, Hsu S-L (2005). Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway. Biochem Pharmacol, 70, 229-41. https://doi.org/10.1016/j.bcp.2005.04.026
  26. Subramaniam A, Shanmugam MK, Ong TH, et al (2013). Emodin inhibits growth and induces apoptosis in an orthotopic hepatocellular carcinoma model by blocking activation of STAT3. Br J Pharmacol, 170, 807-21. https://doi.org/10.1111/bph.12302
  27. Toshiyuki M and Reed JC (1995). Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell, 80, 293-9. https://doi.org/10.1016/0092-8674(95)90412-3
  28. Tsujimoto Y, Shimizu S (2000). Bcl-2 family: life-or-death switch. FEBS Lett, 466, 6-10. https://doi.org/10.1016/S0014-5793(99)01761-5
  29. Yin R, Bao W, Xing Y, et al (2012). MiR-19b-1 inhibits angiogenesis by blocking cell cycle progression of endothelial cells. Biochem Biophys Res Commun, 417, 771-6. https://doi.org/10.1016/j.bbrc.2011.12.032
  30. Zhou Y, Hileman EO, Plunkett W, et al (2003). Free radical stress in chronic lymphocytic leukemia cells and its role in cellular sensitivity to ROS-generating anticancer agents. Blood, 101, 4098-104. https://doi.org/10.1182/blood-2002-08-2512

Cited by

  1. Emodin: A Review of its Pharmacology, Toxicity and Pharmacokinetics vol.30, pp.8, 2016, https://doi.org/10.1002/ptr.5631
  2. Emodin induces hepatocellular carcinoma cell apoptosis through MAPK and PI3K/AKT signaling pathways in vitro and in vivo vol.36, pp.2, 2016, https://doi.org/10.3892/or.2016.4861
  3. Inhibitory effect of emodin on fatty acid synthase, colon cancer proliferation and apoptosis vol.15, pp.4, 2017, https://doi.org/10.3892/mmr.2017.6254
  4. Development of Certain Protein Kinase Inhibitors with the Components from Traditional Chinese Medicine vol.7, pp.1663-9812, 2017, https://doi.org/10.3389/fphar.2016.00523
  5. Chrysophanol induces cell death and inhibits invasiveness via mitochondrial calcium overload in ovarian cancer cells vol.119, pp.12, 2018, https://doi.org/10.1002/jcb.27363
  6. Drug Delivery System for Emodin Based on Mesoporous Silica SBA-15 vol.8, pp.5, 2018, https://doi.org/10.3390/nano8050322