• 제목/요약/키워드: Colloidal silica

검색결과 204건 처리시간 0.049초

세라믹 분말의 입자구조에 따른 나노 진동 흡수장치의 에너지 소산 효율 특성에 대한 연구 (Characteristics of Energy Dissipation in Vibration Absorbing Nano-Damper According to the Architecture of Silica Particle)

  • 문병영;김흥섭
    • 한국재료학회지
    • /
    • 제13권3호
    • /
    • pp.144-149
    • /
    • 2003
  • This study shows an experimental investigation of a reversible nano colloidal damper, which is statically loaded. The porous matrix is composed from silica gel (labyrinth or central-cavity architecture), coated by organo-silicones substances, in order to achieve a hydrophobic surface. Water is considered as associated lyophobic liquid. Reversible colloidal damper static test rig and the measuring technique of the static hysteresis are described. Influence of the pore and particle diameters, particle architecture and length of the grafted molecule upon the reversible colloidal damper hysteresis is investigated, for distinctive types and mixtures of porous matrices. Variation of the reversible colloidal damper dissipated energy and efficiency with temperature, pressure, is illustrated. As a result, he proposed nano damper is effective one, which can be replaced the conventional damper.

정유량 한외여과에서 자연대류 불안정성의 막오염 감소 및 임계 플럭스 증가 효과 (Effect of Natural Convection Instability on Reduction of Fouling and Increasing of Critical Flux in Constant-flow Ultrafiltration)

  • 장아름;남상원;염경호
    • 멤브레인
    • /
    • 제22권5호
    • /
    • pp.332-341
    • /
    • 2012
  • 실리카 콜로이드 용액의 정유량 한외여과에서 중력 방향에 대한 막모듈의 위치(경사각) 변화에 따라 발생되는 자연대류 불안정 흐름의 막오염 저감효과를 차압의 변화 정도를 측정하여 규명하였다. 막표면에 케이크 층을 형성함으로서 막오염을 발생시키는 나노 사이즈의 실리카 입자(평균 크기 = 7, 12, 22, 50 nm 및 78 nm)가 함유된 5가지 종류의 콜로이드 용액을 사용하여 중력 방향에 대한 막모듈의 위치(경사각 = $0^{\circ}{\sim}180^{\circ}$)에 따른 차압의 변화를 교반이 없는 dead-end 정유량 한외여과 실험을 통해 측정하였다. 상대적으로 크기가 작은 실리카 입자(7, 12 nm 및 22 nm)가 함유된 콜로이드 용액의 정유량 한외여과에서 막모듈 경사각을 $30^{\circ}$ 이상으로 유지하면 막모듈에 자연대류 불안정 흐름이 발생되어 막오염 형성을 크게 억제시켜 차압의 증가가 거의 나타나지 않았다. 이 자연대류 불안정 흐름의 발생은 막표면에 형성된 실리카 케이크층의 벌크용액으로의 역이동(back transport)을 유발시킴으로서 차압의 증가를 억제시키는 막성능 개선 효과를 나타내었다. 그러나 상대적으로 크기가 큰 실리카 입자(50 및 78 nm)가 함유된 콜로이드 용액의 정유량 한외여과에서는 자연대류 불안정 흐름 발생의 효과가 거의 없었다. 임계 플럭스 측정 결과 실리카 입자의 크기가 작을수록 그리고 막모듈 경사각이 클수록 막모듈에의 자연대류 불안정 흐름의 발생 강도가 커져 막오염 형성이 억제되었으며, 이로 인해 임계 플럭스가 증가하였다.

콜로이달 실리카와 실란으로부터 합성된 나노하이브리드 코팅 박막의 특성 (Properties of Nano-Hybrid Coating Films Synthesized from Colloidal Silica-Silane)

  • 나문경;안명상;강동필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.232-233
    • /
    • 2006
  • In recent years the interest in organic/inorganic hybrid materials has increased at a fast rate. Nano organic-inorganic hybrid composites have shown advantages for preparing hard coating layers. Especially, nano hybrid composite has low environmental pollution. It has high transparency, hardness, toughness, thermal dissociation temperature, hydrophobicity by using nano sized inorganic material. There are many ways in which these materials may be synthesized, a typical one being the use of silica and silanes using the sol-gel process. The structure of sol-gel silica evolves as a result of these successive hydrolysis and condensation reactions and the subsequent drying and curing. The sol-gel reactions are catalyzed by acids and produce silica sol solutions. The silica sol grows until they reach a size where a gel transition occurs and a solid-like gel is formed. Colloidal silica(CS)/silane sol solutions were synthesized in variation with parameters such as different acidity and reaction time. In order to understand their physical and chemical properties, sol-gel coating films were fabricated on glass. From all sol-gel solutions, seasoning effect of sol-gel coating layer on glass was observed.

  • PDF

On-Channel Micro-Solid Phase Extraction Bed Based on 1-Dodecanethiol Self-Assembly on Gold-Deposited Colloidal Silica Packing on a Capillary Electrochromatographic Microchip

  • Park, Jongman;Kim, Shinseon
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.45-50
    • /
    • 2014
  • A fully packed capillary electrochromatographic (CEC) microchip with an on-column micro-solid phase extraction (SPE) bed for the preconcentration and separation of organic analytes was prepared. A linear microchannel with monodisperse colloidal silica packing was formed on a cyclic olefinic copolymer microchip with two reservoirs on both ends. Silver-cemented silica packing frit structure was formed at the entrance of the microchannel by electroless plating treatment as a base layer. A gold coating was formed on it by reducing $Au^{3+}$ to gold with hydroxylamine. Finally micro-SPE bed was formed by self-assembly adsorption of 1-dodecanethiol on it. Micro-SPE beds were about 100-150 ${\mu}m$ long. Approximately $10^3$ fold sensitivity enhancements for Sulforhodamine B, and Fluorescein in nM concentration levels were possible with 80 s preconcentration. Basic extraction characteristics were studied.

화학기계적연마 공정에서 미소 스크래치 저발생화를 위한 가공기술 연구 (Study on Chemical Mechanical Polishing for Reduction of Micro-Scratch)

  • 김성준;안유민;백창욱;김용권
    • 한국정밀공학회지
    • /
    • 제19권8호
    • /
    • pp.134-140
    • /
    • 2002
  • Chemical mechanical polishing of aluminum and photoresist using colloidal silica-based slurry was experimented. The effects of slurry pH, silica concentration, and oxidizer ($H_2O_2$) concentration on surface roughness and removal rate were studied. The optimum slurry conditions for reduction of micro-scratch were investigated. The optimum chemical mechanical polishing with the colloidal silica-based slurry was compared with conventional chemical mechanical polishing with alumina-based slurry. Chemical mechanical polishing of the aluminum with the colloidal silica-based slurry showed improved result but chemical mechanical polishing of the photoresist did not. The improved result was comparative with that of chemical mechanical polishing with filtered alumina-based slurry which one of desirable methods to reduce the micro-scratch.

Pathological Study on the Pulmonary Toxicity of Particulate Matters (Carbon Black, Colloidal Silica, Yellow Sands) in Mice

  • Shimada, Akinori
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2005년도 춘계 국제심포지엄 및 학술대회
    • /
    • pp.51-82
    • /
    • 2005
  • To compare the pulmonary toxicity between ultrafine colloidal silica particles (UFCSs) and fine colloidal silica particles (FCSs), mice were intratracheally instilled with 3 mg of 14-nm UFCSs and 230-nm FCSs and pathologically examined from 30 mill to 24 hr post-exposure. Histopathologically, lungs exposed to both sizes of particles showed bronchiolar degeneration and necrosis, neutrophilic inflammation in alveoli with alveolar type II cell proliferation and particle-laden alveolar macrophage accumulation. UFCSs, however, induced extensive alveolar hemorrhage compared to FCSs from 30 min onwards. UFCSs also caused more severe bronchiolar epithelial cell necrosis and neutrophil influx in alveoli than FCSs at 12 and 24 hr post-exposure. Laminin positive immunolabellings in basement membranes of bronchioles and alveoli of UFCSs treated animals was weaker than those of FCSs treated animals in all observation times. Electron microscopy demonstrated UFCSs and FCSs on bronchiolar and alveolar wall surface as well as in the cytoplasm of alveolar epithelial cells, alveolar macrophages and neutrophils. Type I alveolar epithelial cell erosion with basement membrane damage in UFCSs treated animals was more severe than those in FCSs treated animals. At 12 and 24 hr post-exposure, bronchiolar epithelia cells in UFCSs treated animals showed more intense vacuolation and necrosis compared to FCSs treated animals. These findings suggest that UFCSs has greater ability to induce lung inflammation and tissue damages than FCSs.

  • PDF