• Title/Summary/Keyword: Colloidal Silica

Search Result 204, Processing Time 0.038 seconds

Polishing of Oxide film by colloidal silica coated with nano ceria (나노 세리아 입자가 표면 코팅된 콜로이달 실리카 슬러리의 Oxide film 연마특성)

  • Kim, Hwan-Chul;Lee, Seung-Ho;Kim, Dae-Sung;Lim, Hyung-Mi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.35-37
    • /
    • 2005
  • 100, 200nm 크기의 colloidal silica 각각에 나노 ceria 입자를 수열합성법으로 코팅하였다. Colloidal silica 입자에 ceria를 코팅 시 slurry의 pH조절과 수열처리에 이용하여 silica에 ceria가 코팅됨을 TEM과 zeta-potential을 이용하여 확인하였다. 연마 슬러리의 분산 안정성과 연마효율을 높이기 위하여 슬러리의 pH 는 9로 하였으며, 이때의 zeta-potential 값은 -25 mV이었다. 1 wt%로 제조된 연마슬러리를 이용하여, 4 inch $SiO_2$, $Si_3N_4$ wafer를 압력변화에 따른 연마특성을 관찰 하였다. Ceria coated colloidal silica 100 nm, 200 nm와 commercial한 $CeO_2$입자를 연마압력 6 psi로 oxide film을 연마한 결과 연마율이 각각 2490 ${\AA}/min$, 4200 ${\AA}/min$, 4300 ${\AA}/min$으로 측정되었다. 또한 $SiO_2$, $Si_3N_4$ film의 6 psi압력에서 ceria coated colloidal silica 100 nm, 200 nm와 commercial 한 $CeO_2$입자의 선택비는 3, 3.8, 6.7 이었다. 입자크기가 클수록 연마율이 높으며, Preston equation을 따라 연마 압력과 연마율이 비례하였다.

  • PDF

Preparation and Interface Properties of Colloidal Silica (콜로이드 실리카의 제조 및 계면특성)

  • Lee, Han Chul;Kim, Jong Hyub;Chang, Yoon Ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.386-390
    • /
    • 2006
  • Colloidal silica which has high surface area and excellent surface properties are chemically stable inorganic materials and used for various applications in industry. Silica sol was prepared from sodium silicate solution by acid neutralization method and ion exchange treatment to remove sodium ions. Through the experimental analysis for controlling factors of particle growth rate, such as temperature, pH, and aging time, the uniform size distribution of silica sol could be obtained. The size distribution and shape of silica sol was measured by TEM and dynamic light scattering method. Zeta potential change and gelling phenomena of silica sol and its rheological properties also investigated.

Retention and Drainage Characteristics of Compozil System and Impact of Cationic Corn Starch for its Improvement (콤포질 시스템의 보류 및 탈수특성과 양성 옥수수전분을 이용한 성능 개선)

  • 이학래;김태영;윤혜정
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.2
    • /
    • pp.30-39
    • /
    • 1998
  • Effect of cationic starches and anionic colloidal silica on retention and drainage characteristics of Compozil system was investigated. Depending upon the degree of substitution and molecular weight of cationic starches and morphological characteristics of anionic colloidal silica, retention and drainage properties of Compozil system were significantly influenced. When cationic starch addition level increased above a certain limit retention and stock freeness were decreased. To elucidate this an electrostatic coagulation mechanism occurring between unadsorbed starch molecules and anionic colloidal silica was proposed. Unstructured colloidal silica showed greater improvement in retention than structured colloidal silica. Cationic corn starches with different degree of substitution and molecular weights were prepared and their effect as a constituent of Compozil system was also evaluated. By controlling the molecular weight and degree of substitution of cationic corn starch it was possible to achieve significant improvement in fines retention. Cationic corn starch with higher degree of substitution maintained its retention efficiency even when the stock conductivity was increased. Turbidity measurement technique was found to be a simple and useful method to measure the retention characteristics.

  • PDF

Development & Characteristics of the Permanent Grout based on Colloidal Silica (실리카 콜로이드를 기재(基材)로 한 항구그라우트(PSG)의 개발과 공학적 특성)

  • Ryu, Dong-Sung;Jeong, Gyung-Hwan;Lee, Sng-Kook;Lee, Jun-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.189-196
    • /
    • 2004
  • In this study, the colloidal silica grouts (PSG) with novel chemical compositions for permanent reinforcement and water cut-off of the ground were prepared and their engineering charateristics were investigated. The optimum mixing recipes for both homogeneous solution grouts and heterogeneous suspension grouts were investigated and established through many repeated lab tests. The various physical properties(such as compressive strength, durability and syneresis) of the grout gels derived from the colloidal silica were investigated and compared with those of the well-known existing watergalss grouts. The all experimental results showed that the novel colloidal silica grouts(PSG) had greatly excellent performances as permanent grouts, especially in comparison with the existing watergalss grouts.

  • PDF

Material and rheological properties of (glycidoxypropyl) trimethoxysilane modified colloidal silica coatings

  • Kang Hyun Uk;Park Jung Kook;Kim Sung Hyun
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.175-182
    • /
    • 2004
  • Colloidal coating solution was prepared to enhance the hydrophilic property of the film surface. Water and ethanol were used as the dispersion media and (glycidoxypropyl) trimethoxysilane (GPS) as a binder in the colloidal silica coatings. Ethylene diamine was added to the colloidal silica solution as the curing agent. The colloidal silica solution was regarded as a hard-sphere suspension model with low volume fraction of the silica particles. Rheological properties of the silica suspensions modified with GPS have been investigated as a function of pH and concentration. The acidic solution showed high viscosity change by fast hydrolysis reaction and adsorption of the organic binders on the surface of silica particles. However, the hydrolysis was slow at the basic condition and the binders combined with themselves by condensation. The viscosity change was smallest at pH 7. The viscosity increased with the curing time after adding ethylenediamine, and the increase of viscosity at low pH was higher than that at high pH. The hydrophilic properties of the coating film were investigated by the contact angle of water and film surface. The smallest contact angle was shown under the strong acidic condition of pH 2.

Fabrication and characterization of photocurable inorganic-organic hybrid materials using organically modified colloidal-silica nanoparticles and acryl resin

  • Kang, Dong-Jun;Han, Dong-Hee;Kang, Young-Taec;Kang, Dong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.422-422
    • /
    • 2009
  • Photocurable inorganic-organic hybrid materials were prepared from colloidal-silica nanoparticles synthesized through the solgel process and using acryl resin. The synthesized colloidal-silica nanoparticles had uniform diameters of around 20 nm, and they were organically modified, using methyl and methacryl functional silanes, for efficient hybridization with acryl resin. The organically modified and stabilized colloidal-silica nanoparticles could be homogeneously hybridized with aeryl resin without phase separation. The successfully fabricated hybrid materials exhibit efficient photocurability and simple film formation due to the photopolymerization of the organically modified colloidal-silica nanoparticles and acryl resin upon UV exposure. The fabricated hybrid films exhibit an excellent optical transmission of above 90% in the visible region as well as an enhanced surface smoothness of around 1 nm RMS roughness. In addition, the hybrid films exhibit improved thermal and mechanical characteristics, much better than those of acryl resin. More importantly, these photocurable hybrid materials fabricated through the synergistic combination of colloidal-silica nanoparticles with acryl resin are candidates for optical and electrical applications.

  • PDF

Preparation of UV-Curable Hydrophilic Coating Films Using Colloidal Silica (콜로이드 실리카를 이용한 UV 경화형 친수성 코팅 도막 제조)

  • Yang, Jun Ho;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.754-761
    • /
    • 2017
  • UV-curable hydrophilic coating solutions were prepared by mixing colloidal silica dispersed in alcohol with an acrylic monomer, pentaerythritol triacrylate (PETA). Hydrophilic coating films were also prepared by spin coating the hydrophilic coating solutions on PC substrates and UV curing for 10 minutes subsequently. The effect of the amount of colloidal silica in the coating solutions, which was varied from 10 g to 50 g, was investigated on the hydrophilic properties of UV-cured coating films. The results showed that the amount of colloidal silica had a great influence on the hydrophilic properties of UV-cured coating films and the coating film prepared with 30 g of colloidal silica showed a lowest contact angle of $37^{\circ}$ and an excellent pencil hardness of H.

Synthesis of Nano-Colloidal Silica Coated with Silver (은을 코팅한 Nano-Colloidal Silica의 합성)

  • Lee, Joo-Heon;Lim, Yoon-Hee;Ham, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • The self assembled silver process and silver coating process after surface reforming for silica particle, were investigated to coat the silver to colloidal silica. The effects of silver amounts and reductant amounts on silver coating efficiencies were investigated. The silver coating process after surface reforming for silica particle using MPTS (3-Mercaptopropyl trimethoxysilane) and APTS (3-Aminopropyl trimethoxysilane), showed the higher coating efficiency and better antibacterial effect than the self assembled silver process.

Development of Uniform sized(120nm) and Pro-environmental Colloidal Silica Slurry for CMP process (균일한 입도분포를 가진 큰 입자(120nm)로 구성된 친환경적인 반도체 연마제용 Colloidal Silica 개발)

  • Jung, Suk-Jo;Byun, Jung-Hwan;Bae, Sun-Yun;Park, Chul-Jin;Kim, Chang-Hoon;Cho, Kweng-Rae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.129-131
    • /
    • 2004
  • 전 세계적으로 반도체 연마제용으로 silica를 많이 사용하고 있으며, 주로 fumed silica 및 colloidal silica로 구분되어진다. 반도체 연마제로서의 가장 중요한 요소는 연마율, defect 및 uniformity 등이 있으며, 현재 defect 및 uniformity는 많은 연구개발을 통하여 증진되었지만 반도체 생산량과 직접 관련된 연마율을 증가시키는 기술은 화학약품 및 slurry의 농도 증가로만 가능하다. 이에 연마제의 전반적인 기능을 상승시켜 기존보다 연마율은 높이고, 결함율을 낮추며, 120nm 이상의 입자크기를 제조하여도 근일한 입도 분포도를 나타내어주고, 장기간 안정하게 사용가능하고, 친환경적인 반도체 연마제를 개발하였다.

  • PDF

Fabrication and characterization of solution processable organosilane-modified colloidal titania nanoparticles and silica-titania hybrid films

  • Kang, Dong Jun;Park, Go Un;Lee, Hyeon Hwa;Ahn, Myeong Sang;Park, Hyo Yeol
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.78-81
    • /
    • 2012
  • Colloidal titania nanoparticles were synthesized by a simple sol-gel process. The obtained nanoparticles showed high crystallinity and were of the anatase type. These crystalline colloidal titania nanoparticles were organically modified using methyl- and glycidyl-grafted silanes in order to enhance their stability and solution processability. The stabilized colloidal titania nanoparticles could be dispersed homogeneously without aggregation and converted into silica-titania hybrid films with the heterogeneous Si-O-Ti bonds by a low-temperature solution process. The fabricated silica-titania hybrid films showed high transparency (~ 90%) in the visible range, and low RMS roughness (<1 nm). Therefore, the organosilane-modified crystalline colloidal titania nanoparticles can be used in solution-processable functional coatings for electro-optical devices.