• Title/Summary/Keyword: Colloidal Droplet

Search Result 10, Processing Time 0.027 seconds

Novel Phase States in Highly Charged Colloidal Suspensions

  • Terada Y.;Muramoto K.;Tokuyama M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.19-20
    • /
    • 2003
  • Brownian-dynamics simulation on highly charged colloidal suspensions is performed by employing Tokuyama effective force recently proposed. The radial distribution function suggests that there exist three novel phases, a gas phase, a liquid droplet phase, and a face-centered cubic (FCC) crystal droplet phase, depending on the minimum values of that potential. The dynamics of droplet growth is also investigated both in liquid droplet phase and in crystal droplet phase. Thus, different types of characteristic growth stages are found.

  • PDF

A Study on Particle Deposition of an Evaporating Colloidal Droplet (콜로이드 액적의 증발에 의한 입자 증착에 관한 연구)

  • Wee Sang-Kwon;Lee Jung-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.663-670
    • /
    • 2006
  • The presented study aims to investigate the colloidal droplet deposition caused by evaporation of the liquid. In the numerical analysis, the evaporation is carried out by using different evaporation function intended to obtain different shape of solute deposition. In the experiment, the colloidal droplets of different solvents are placed on a glass plate and the surface profiles are measured after drying the solvents of the droplets to investigate the effect of the solvent evaporation on the final deposition profile. Comparing the surface profiles obtained under different conditions, the optimum drying conditions of colloidal droplets are, determined to obtain uniform surface profiles. The numerical results showed that ring-shaped deposition of solute was formed at the edge of the droplet due to the coffee stain effect and the height of the ring was reduced at the lower evaporation rate. The experiments showed that the boiling point of a solvent was critical to the surface uniformity of the deposition profile and the mixture of solvents with different boiling points influenced the uniformity as well.

Experimental study on impact and spreading of SiO2 nanoparticle colloidal suspension droplets (SiO2 나노입자 현탁액의 충돌 및 퍼짐에 관한 실험적 연구)

  • Huh, H.K.;Lee, S.J.
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.3
    • /
    • pp.12-16
    • /
    • 2013
  • The impact and spreading behaviors of silicon dioxide nanoparticle colloidal suspension droplets were quantitatively visualized using a high-speed imaging system. Millimeter-scale droplets were generated by a syringe pump and a needle. Droplets of different velocity were impacted on a non-porous solid surface. Images were consecutively recorded using a CMOS high-speed camera at 5000 fps (frames per second) for millimeter-scale droplets. Temporal variations of droplet diameter, velocity and maximum spreading diameters were evaluated from the sequential images captured for each experimental condition. Effects of Reynolds number, Weber number, and particle concentration were investigated experimentally.

Fabrication and Evaluation of Colloidal Silica Containing Powders for Solid Self-emulsifying Drug Delivery System of Poorly Water Soluble Rivaroxaban (난용성 리바록사반 약물의 자가 유화 시스템 분말 제조를 위한 콜로이드 실리카 함유 분말의 제조 및 평가)

  • Sung Giu Jin
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.305-309
    • /
    • 2023
  • This study aims to prepare a colloidal silica-containing powder to enhance the solubility and dissolution rate of rivaroxaban using a self-nanoemulsifying drug delivery system (SNEDDS). We investigate the impact of colloidal silica on a nanoemulsion system for preparing powdered SNEDDS. The liquid SNEDDS comprises 30/20/50 (w/w/w) Peceol/Cremophor RH40/Tween 80, which results in the formation of the smallest droplets. Three powdered SNEDDS formulations are prepared by suspending the liquid SNEDDS formulation using colloidal silica and spray drying. The powdered SNEDDS prepared with liquid SNEDDS and colloidal silica at a ratio of 1/0.5 (w/w) exhibits the highest water solubility (0.94 ± 0.62 vs. 26.70 ± 1.81 ㎍/mL) and dissolution rate (38.4 ± 3.6 vs. 85.5 ± 3.4%, 45 min) when compared to the drug alone. Morphologically, the liquid SNEDDS is adsorbed onto colloidal silica and forms smaller particles. In conclusion, an SNEDDS containing rivaroxaban, prepared using colloidal silica, facilitates the creation of a nanoemulsion and enhances the water solubility of rivaroxaban. Accordingly, this technology holds significant potential for commercialization.

Effect of Thermal Treatment Conditions on Shapes of Inkjet Printed Silver Patterns (열처리 조건이 잉크젯 인쇄된 실버 패턴의 형상에 미치는 영향)

  • Shin, Kwon-Yong;Kang, Kyung-Tae;Cho, Young-June;Lee, Sang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1712-1713
    • /
    • 2011
  • Inkjet technology have many merits in plenty of industrial applications. However, deposited droplet has a very critical issue that is coffee ring effect, for the application to an industrial manufacturing process. To remove the coffee ring effect, the effect of thermal treatment conditions on shapes of inkjet printed silver patterns were investigated in various surface condition. The surface changes were characterized by the contact angle measurement. Droplets from a 50 ${\mu}m$ nozzle were printed on the substrate after optimizing the ejection of individual droplets. Ink with a high boiling point of main solvent results in coffee ring effect. This result implies that the dominant factor that determines the shape of droplet is the drying conditions of main solvent of silver nanoparticle colloidal ink. As a results, selecting a proper thermal treatment conditions is very crucial for better shapes of inkjet printed silver nanoparticle colloidal patterns.

  • PDF

Nano-Sized Mullite(3Al2O3.42SiO2) Colloids Fabricated by Spray Combustion Synthesis (SCS) Technique (분무연소합성(SCS)법에 의한 나노크기 물라이트(3Al2O3.42SiO2) 콜로이드 제조)

  • Lee, Sang-Jin;Jun, Byung-Sei
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.4
    • /
    • pp.297-301
    • /
    • 2004
  • Nano-sized mullite (3Al$_2$O$_3$$.$2SiO$_2$) colloids were prepared by use of the spray combustion method. For combustion reaction, Al(NO$_3$)$_3$$.$9$H_2O$, and CH$_{6}$N$_4$O were used as an oxidizer and a fuel respectively, and then colloidal silica was also added as 2SiO$_2$source for mullite. The temperature of the reaction chamber was kept at 80$0^{\circ}C$ to initiate the ignition of droplets of the mixed precursors. For preventing droplet coagulation, the droplet number concentration was reduced using the metal screen filter, and the residence time of aerosol was kept at 2.5 seconds for laminar flow. The synthesized colloidal particles had an uniform spherical shape with 130 nanometer size and the crystalline phase showed the mullite with stoichiometry in the observations of XRD and TEM.

Zn2SiO4:Mn Phsophor Particles Prepared by Flame Spray Pyrolysis (화염분무열분해 공정에 의해 합성되어진 Zn2SiO4:Mn 형광체)

  • Kang Y. C.;Sohn J. R.;Jung K. Y.
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.600-606
    • /
    • 2004
  • $Zn_{2}SiO_{4}:Mn$ phosphor particles were prepared by a flame spray pyrolysis method. It has been generally known that the high-temperature flame enables fast drying and decomposition of droplets. In the present investigation, the morphology and luminescent property of $Zn_{2}SiO_{4}:Mn$ phosphor were controlled in a severe flame preparation condition. The particle formation in the flame spray pyrolysis process was achieved by the droplet-to-particle conversion without any evaporation of precursors, which made it possible to obtain spherical $Zn_{2}SiO_{4}:Mn$ particles of a pure phase from a droplet. Using colloidal solutions wherein dispersed nano-sized silica particles were adopted as a silicon precursor. $Zn_{2}SiO_{4}:Mn$ particles with spherical shape and filled morphology were prepared and the spherical morphology was maintained even after the high-temperature heat treatment, which is necessary to increase the photoluminescence intensity. The $Zn_{2}SiO_{4}:Mn$ particles with spherical shape, which were prepared by the flame spray pyrolysis and posttreated at $1150^{\circ}C$, showed good luminescent characteristics under vacuum ultraviolet (VUV) excitation.

Formation of Skin Lotions Using Various Vehicles and Skin Hydration Effects for a Skin (다양한 제형을 활용한 화장수의 제조와 보습효과)

  • Cho, Wan-Goo;Kim, Su-Jeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.124-131
    • /
    • 2009
  • We have produced, characterized and compared different colloidal vehicles based on nanoemulsions. We also have investigated morphology and droplet distribution by means of electron microscope and photon correlation spectroscopy. Nanoemulsion systems characterized by different method on formulations have been obtained. Hydration power has been studied by means of a corneometer, measuring the skin electrical capacitance before and after the application of various type of skin lotions. It has been demonstrated that nanoemulsion with oil or fatty alcohol displayed a pronounced hydration power with respect to the solubilization system. In order to compare the smoothness of the skin after using skin lotion, we have measured the friction force. The skin lotions produced by nanoemulsion technique show improved smoothness of an atopic skin.

Behaviour of Nanoemulsions Containing Ceramide IIIB and Stratum Corneum Lipids (세라마이드 IIIB와 각질층 지질을 함유한 나노에멀젼의 거동)

  • Cho, Wan Goo;Kim, Kyung Ah;Jang, Seon Il;Cho, Byoung Ok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • Oil/water (O/W) nanoemulsions are effective vehicles to change the permeability of the skin. In this study, we focused on the preparation and characterization of nanoemulsion which serve as colloidal carriers for the dermal application of ceramide IIIB (CIIIB) and stratum corneum (SC) lipids such as cholesterol, and palmitic acid. In order to optimize the nanoemulsions, emulsification process conditions were conducted with regard to droplet size, nanoemulsion stability, and solubility of CIIIB. A decrease in droplet size was observed through emulsification temperature of $80^{\circ}C$ and phase inversion composition (PIC) method. CIIIB has low solubility in oil and water. When the concentration of CIIIB was increased, the droplet size of nanoemulsion was increased. When Lipoid S75-3 was added to the oil phase, the solubility of CIIIB increased, indicating some interactions shown in DSC measurements. CIIIB and SC lipids could be successfully incorporated in nanoemulsions without crystallization or physical instability. In conclusion, a stable nanoemulsion containing the SC lipids could be effective as an efficient moisturizing system for skin.